

Document Number: AFT27S010N Rev. 3, 12/2015

AFT27S010NT1

√RoHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 1.26 W RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 728 to 3600 MHz.

• Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 90 mA, P_{out} = 1.26 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

2100 MHz

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
2110 MHz	21.6	23.2	9.1	-42.0	-11
2140 MHz	21.8	23.0	9.0	-41.5	-15
2170 MHz	21.7	22.6	8.7	-41.7	-15

2300 MHz

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
2300 MHz	21.2	23.6	9.0	-40.9	-10
2350 MHz	21.6	22.6	8.6	-40.0	-22
2400 MHz	20.7	21.0	8.3	-40.1	-9

2600 MHz

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
2500 MHz	19.6	22.0	9.8	-44.8	-7
2600 MHz	21.0	22.7	9.4	-41.4	-15
2700 MHz	19.6	21.2	8.9	-39.7	-5

Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 80 mA, P_{out} = 1.26 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

700 MHz

Frequency	G _{ps} (dB)	η _D Output PAR (%) (dB)		ACPR (dBc)	IRL (dB)
728 MHz	24.3	25.5	9.3	-44.0	-12
748 MHz	24.3	24.7	9.4	-43.9	-12
768 MHz	24.3	23.8	9.5	-43.6	-12

3500 MHz

Frequency	G _{ps} (dB)	η _D Output PAR (%) (dB)		ACPR (dBc)	IRL (dB)
3400 MHz	14.7	15.8	9.0	-44.9	-7
3500 MHz	16.0	16.8	9.0	-44.9	-8
3600 MHz	15.0	17.4	8.6	-44.2	-4

1. All data measured in fixture with device soldered to heatsink.

Features

- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- Designed for Digital Predistortion Error Correction Systems
- Universal Broadband Driven Device with Internal RF Feedback

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating		Symbol	Va	lue	Unit	
Drain-Source Voltage		V _{DSS}	-0.5	, +65	Vdc	
Gate-Source Voltage		V _{GS}	-6.0	, +10	Vdc	
Operating Voltage		V _{DD}	32,	+0	Vdc	
Storage Temperature Range		T _{stq}	-65 to	+150	°C	
Case Operating Temperature Range		T _C	-40 to	+150	°C	
Operating Junction Temperature Range (1,2)		TJ	-40 to	+150	°C	
Table 2. Thermal Characteristics						
Characteristic			Valu	e (2,3)	Unit	
Thermal Resistance, Junction to Case Case Temperature 77°C, 1.3 W CW, 28 Vdc, I _{DQ} = 90 mA, 2140 MHz			3	.5	°C/W	
Table 3. ESD Protection Characteristics					•	
Test Methodology			Cla	ass		
Human Body Model (per JESD22-A114)		1B				
Machine Model (per EIA/JESD22-A115)		A				
Charge Device Model (per JESD22-C101)			III			
Table 4. Moisture Sensitivity Level						
Test Methodology	Rating	g Package Peak Temperature L			Unit	
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260			°C	
Table 5. Electrical Characteristics (T _A = 25°C unless otherwise no	oted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
Off Characteristics						
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_		1	μAdc	
On Characteristics						
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 12.1 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc	
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 90 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	1.8	2.3	Vdc	
Drain-Source On-Voltage $(V_{GS} = 6 \text{ Vdc}, I_D = 121 \text{ mAdc})$	V _{DS(on)}	0.1	0.2	0.3	Vdc	

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes – AN1955.

(continued)

Г

Table 5. Electrical Characteristics (T_A = 25° C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ} = 90 mA, P _{out} = 1.26 W Avg., f = 2170 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF, ACPR measured in 3.84 MHz Channel					
Bandwidth @ ±5 MHz Offset.	,				

Power Gain	G _{ps}	20.0	21.7	—	dB
Drain Efficiency	η _D	18.5	21.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-40.6	-37.9	dBc
Input Return Loss	IRL	_	-14	-9	dB

Load Mismatch (In Freescale Test Fixture, 50 ohm system) I_{DQ} = 90 mA, f = 2140 MHz

VSWR 5:1 at 32 Vdc, 13.9 W CW Output Power	
(3 dB Input Overdrive from 10 W CW Rated Power)	

No Device Degradation

Typical Performance (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 90 mA, 2110-2170 MHz Bandwidth

P _{out} @ 1 dB Compression Point, CW	P1dB	—	10	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2110-2170 MHz frequency range.)	Φ	_	-12.6	_	o
VBW Resonance Point (IMD Seventh Order Intermodulation Inflection Point)	VBW _{res}	_	120	—	MHz
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 1.26 W Avg.	G _F	—	0.20	—	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.011	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	—	0.004	—	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
AFT27S010NT1	T1 Suffix = 1000 Units, 16 mm Tape Width, 7-inch Reel	PLD-1.5W

*C1 and C5 are mounted vertically.

NOTE: All data measured in fixture with device soldered to heatsink.

Figure 2. AFT27S010NT1 Test Circuit Component Layout - 2110-2170 MHz

Part	Description	Part Number	Manufacturer
C1, C5, C6, C8, C9	9.1 pF Chip Capacitors	ATC100B9R1JT500XT	ATC
C2	1.1 pF Chip Capacitor	ATC100B1R1JT500XT	ATC
C3	2.0 pF Chip Capacitor	ATC100B2R0JT500XT	ATC
C4	1.0 pF Chip Capacitor	ATC100B1R0JT500XT	ATC
C7, C10, C11, C12, C13	10 μ F Chip Capacitors	GRM32ER61H106KA12L	Murata
Q1	RF Power LDMOS Transistor	AFT27S010NT1	Freescale
R1	2.37 Ω Chip Resistor	CRCW12062R37FKEA	Vishay
РСВ	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D53402	MTL

TYPICAL CHARACTERISTICS – 2110-2170 MHz

Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ Pout = 1.26 W Avg.

(PARC) versus Output Power

-20

-25

23

22.5

TYPICAL CHARACTERISTICS – 2110-2170 MHz

Figure 6. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

Figure 7. Broadband Frequency Response

Table 8. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 87 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(V)	η _D (%)	АМ/РМ (°)	
2110	1.23 - j0.107	0.698 + j0.572	5.85 + j3.49	21.0	41.2	13	60.2	-12	
2140	1.08 - j0.422	0.877 + j0.537	5.79 + j3.28	20.8	41.2	13	59.5	-13	
2170	1.12 - j0.0337	1.26 + j0.455	5.57 + j3.12	20.7	41.1	13	60.1	-11	

		Max Output Power								
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	1.23 - j0.107	0.592 + j0.741	6.75 + j2.96	18.7	42.0	16	59.6	-18		
2140	1.08 - j0.422	0.807 + j0.78	6.62 + j2.72	18.5	42.0	16	58.6	-20		
2170	1.12 - j0.0337	1.25 + j0.806	6.47 + j2.61	18.4	42.0	16	59.8	-17		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Load Pull Performance — Maximum Drain Efficiency Tuning

V_{DD} = 28 Vdc, I_{DQ} = 87 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Drain Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	1.23 - j0.107	0.609 + j0.446	3.56 + j6.04	22.7	39.7	9	67.5	-20		
2140	1.08 - j0.422	0.736 + j0.434	3.63 + j5.62	22.4	39.9	10	66.6	-21		
2170	1.12 - j0.0337	1.03 + j0.312	3.37 + j5.39	22.5	39.6	9	67.3	-19		

			Max Drain Efficiency						
				P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	1.23 - j0.107	0.512 + j0.627	3.80 + j5.81	20.5	40.5	11	67.3	-29	
2140	1.08 - j0.422	0.671 + j0.667	3.77 + j5.41	20.3	40.6	11	65.9	-31	
2170	1.12 - j0.0337	1.05 + j0.666	3.83 + j5.15	20.2	40.6	12	67.1	-27	

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL LOAD PULL CONTOURS - 2140 MHz

Figure 8. P1dB Load Pull Output Power Contours (dBm)

Figure 10. P1dB Load Pull Gain Contours (dB)

Figure 9. P1dB Load Pull Efficiency Contours (%)

Figure 11. P1dB Load Pull AM/PM Contours (°)

 Gain
 Drain Efficiency
 Linearity
 Output Power

P3dB - TYPICAL LOAD PULL CONTOURS — 2140 MHz

Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 14. P3dB Load Pull Gain Contours (dB)

Figure 13. P3dB Load Pull Efficiency Contours (%)

Figure 15. P3dB Load Pull AM/PM Contours (°)

2500-2700 MHz

NOTE: All data measured in fixture with device soldered to heatsink.

Table 10. AFT27S010NT1	Test Circuit Component D	Designations and Va	lues — 2500-2700) MHZ

Part	Description	Part Number	Manufacturer
C1, C4, C5, C7, C8	6.8 pF Chip Capacitors	ATC100B6R8JT500XT	ATC
C2	1.2 pF Chip Capacitor ATC100B1R2JT500>		ATC
C3	1 pF Chip Capacitor ATC100B1R0JT500XT		ATC
C6, C9, C10, C11, C12	C10, C11, C12 10 μF Chip Capacitors G		Murata
C13	220 μ F, 50 V Electrolytic Capacitor	227CKS050M	Illinois Capacitor
Q1	RF Power LDMOS Transistor	AFT27S010NT1	Freescale
R1	4.75 Ω Chip Resistor	CRCW12064R75FKEA	Vishay
PCB	Rogers RO4350B, $0.020''$, $\epsilon_r = 3.66$	D53817	MTL

TYPICAL CHARACTERISTICS - 2500-2700 MHz

Figure 19. Broadband Frequency Response

NOTE: All data measured in fixture with device soldered to heatsink.

Figure 20. AFT27S010NT1 Test Circuit Component Layout — 2300-2400 MHz

Part	Description	Part Number	Manufacturer
C1, C4, C5, C7, C8	6.8 pF Chip Capacitors	ATC100B6R8JT500XT	ATC
C2, C14	1 pF Chip Capacitors	ATC100B1R0JT500XT	ATC
C3	1.2 pF Chip Capacitor ATC100B1		ATC
C6, C9, C10, C11, C12	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C13	220 μF, 50 V Electrolytic Capacitor	227CKS050M	Illinois Capacitor
Q1	RF Power LDMOS Transistor	AFT27S010NT1	Freescale
R1	4.75 Ω, Chip Resistor	CRCW12064R75FKEA	Vishay
PCB	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D53817	MTL

Table 11. AFT27S010NT1 Test Circuit Component Designations and Values — 2300-2400 MHz

TYPICAL CHARACTERISTICS – 2300-2400 MHz

Figure 22. Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power

Figure 23. Broadband Frequency Response

				Max Output Power					
					P1dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2300	1.12 - j1.10	0.995 + j1.38	5.39 + j2.23	20.1	40.9	12	55.9	-12	
2400	1.06 - j1.59	0.948 + j1.96	5.09 + j1.86	19.8	40.9	12	55.1	-12	
2500	1.00 - j1.60	1.29 + j1.95	4.51 + j1.56	19.2	40.8	12	55.8	-10	
2600	0.985 - j3.50	0.743 + j3.66	4.81 + j1.10	19.0	41.3	13	56.2	-14	
2690	1.10 - j3.13	1.48 + j2.98	4.14 + j0.987	19.0	41.0	13	57.5	-12	

Table 12. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 87 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

			Max Output Power					
				P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)
2300	1.12 - j1.10	0.919 + j1.64	6.28 + j1.74	17.8	41.7	15	55.0	-19
2400	1.06 - j1.59	0.861 + j2.23	5.86 + j1.41	17.5	41.7	15	54.4	-19
2500	1.00 - j1.60	1.37 + j2.32	5.40 + j1.17	16.9	41.7	15	55.8	-17
2600	0.985 - j3.50	0.579 + j3.82	5.37 + j0.912	16.9	42.0	16	55.8	-22
2690	1.10 - j3.13	1.74 + j3.43	5.04 + j0.759	16.8	41.8	15	57.1	-18

(1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 13. Load Pull Performance — Maximum Drain Efficiency Tuning

V_{DD} = 28 Vdc, I_{DQ} = 87 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle

				Max Drain Efficiency				
					P1dB			
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)
2300	1.12 - j1.10	0.855 + j1.22	3.36 + j4.23	21.6	39.8	9	61.9	-20
2400	1.06 - j1.59	0.829 + j1.80	3.34 + j3.53	21.2	39.9	10	60.4	-19
2500	1.00 - j1.60	1.04 + j1.82	3.21 + j3.00	20.8	40.0	10	61.1	-16
2600	0.985 - j3.50	0.709 + j3.49	3.17 + j2.53	20.0	40.5	11	60.7	-20
2690	1.10 - j3.13	1.14 + j2.91	2.87 + j2.16	20.4	40.2	10	62.0	-18

			Max Drain Efficiency						
					P3dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2300	1.12 j1.10	0.803 + j1.51	3.96 + j4.10	19.4	40.7	12	61.1	-27	
2400	1.06 - j1.59	0.757 + j2.07	3.70 + j3.45	19.1	40.6	12	59.8	-27	
2500	1.00 - j1.60	1.15 + j2.18	3.58 + j2.94	18.7	40.8	12	61.2	-24	
2600	0.985 - j3.50	0.556 + j3.73	4.15 + j2.29	17.8	41.5	14	59.7	-26	
2690	1.10 - j3.13	1.43 + j3.33	3.40 + j2.01	18.2	41.1	13	61.7	-25	

(1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL LOAD PULL CONTOURS - 2500 MHz

Figure 24. P1dB Load Pull Output Power Contours (dBm)

Figure 26. P1dB Load Pull Gain Contours (dB)

Figure 25. P1dB Load Pull Efficiency Contours (%)

Figure 27. P1dB Load Pull AM/PM Contours (°)

P3dB - TYPICAL LOAD PULL CONTOURS - 2500 MHz

Figure 28. P3dB Load Pull Output Power Contours (dBm)

Figure 29. P3dB Load Pull Efficiency Contours (%)

 Gain
 Drain Efficiency
 Linearity
 Output Power

TYPICAL CHARACTERISTICS — 3400-3600 MHz

Figure 32. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 1.26 W Avg.

Figure 34. Broadband Frequency Response

728-768 MHz

*C1, C7 and C9 are mounted vertically.

NOTE: All data measured in fixture with device soldered to heatsink.

Table 14.	AFT27S010NT1	Test Circuit Com	ponent Desiar	nations and \	/alues — 7	28-768 MHz
		Tool on our oom	pononi booigi	allonio ana i	alaco /	

Part	Description	Part Number	Manufacturer
C1, C9	82 pF Chip Capacitors	ATC100B820JT500XT	ATC
C2	3.9 pF Chip Capacitor	ATC100B3R9JT500XT	ATC
C3	1.7 pF Chip Capacitor	ATC100B1R7JT500XT	ATC
C4	2.7 pF Chip Capacitor	ATC100B2R7JT500XT	ATC
C5, C10, C11, C12, C13	33 pF Chip Capacitors	ATC100B330JT500XT	ATC
C6, C14, C15, C16, C17	10 μF Chip Capacitors	GRM32ER61H106KA12L	Murata
C7	3.9 pF Chip Capacitor	ATC100B3R9JT500XT	ATC
C8	0.5 pF Chip Capacitor	ATC100B0R5JT500XT	ATC
Q1	RF Power LDMOS Transistor	AFT27S010NT1	Freescale
R1	10 Ω Chip Resistor	CWCR120610R0JNEA	Vishay
PCB	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D53406	MTL

TYPICAL CHARACTERISTICS — 728-768 MHz

Figure 38. Broadband Frequency Response

Table 15. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 81 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

				Ма	x Output Pov	wer				
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
728	2.05 + j12.1	1.72 - j11.7	15.1 + j6.07	27.2	41.3	14	59.8	-15		
748	2.04 + j11.1	1.69 - j11.2	14.6 + j5.90	27.0	41.5	14	60.2	-15		
768	1.94 + j10.5	1.69 - j10.8	14.6 + j5.49	26.7	41.5	14	60.1	-14		

				Ма	x Output Pov	ver				
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(V)	η _D (%)	АМ/РМ (°)		
728	2.05 + j12.1	1.53 - j11.7	16.1 + j4.43	24.7	42.3	17	61.9	-17		
748	2.04 + j11.1	1.50 - j11.3	15.1 + j4.52	24.6	42.4	17	61.7	-17		
768	1.94 + j10.5	1.46 - j10.9	14.8 + j4.54	24.5	42.4	17	61.7	-16		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 16. Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQ} = 81 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

				Max Drain Efficiency							
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
728	2.05 + j12.1	1.97 - j10.7	18.5 + j16.4	27.9	39.7	9	68.4	-13			
748	2.04 + j11.1	1.81 - j9.83	16.7 + j20.1	28.6	38.9	8	68.5	-14			
768	1.94 + j10.5	1.83 - j9.69	17.4 + j18.0	28.3	39.5	9	69.2	-14			

				Max	c Drain Efficie	ency				
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
728	2.05 + j12.1	1.69 - j10.8	18.3 + j18.6	26.1	40.3	11	73.7	-14		
748	2.04 + j11.1	1.58 - j10.4	17.5 + j17.5	26.4	40.5	11	77.4	-14		
768	1.94 + j10.5	1.51 - j9.87	15.8 + j19.1	26.8	40.0	10	72.8	-15		

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL LOAD PULL CONTOURS - 748 MHz

Figure 39. P1dB Load Pull Output Power Contours (dBm)

Figure 41. P1dB Load Pull Gain Contours (dB)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

IMAGINARY (22)

P3dB - TYPICAL LOAD PULL CONTOURS - 748 MHz

Figure 45. P3dB Load Pull Gain Contours (dB)

Figure 44. P3dB Load Pull Efficiency Contours (%)

Figure 46. P3dB Load Pull AM/PM Contours (°)

 Gain
 Drain Efficiency
 Linearity
 Output Power

Figure 47. PCB Pad Layout for PLD-1.5W

Figure 48. Product Marking

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE PRINT VERSION NO			T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00476D	REV: O
PLD-1.5W		CASE NU	IMBER: 2297-01	14 JUN 2012
		STANDAF	RD: NON-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	CHANICAL OUTLINE PRINT VERSION NO		T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00476D	REV: O
PLD-1.5W		CASE NL	IMBER: 2297-01	14 JUN 2012
		STANDAF	RD: NON-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. HATCHING REPRESENTS THE EXPOSED AND SOLDERABLE AREA. DIMENSIONS G, S, H AND U REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA.

4. THESE SURFACES ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	IN	СН	МІІ	LIMETER		INCH		М	ILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.255	.265	6.48	6.73	Q	.055	.063	1.40) 1.60
В	.225	.235	5.72	5.97	R	.200	.210	5.08	3 5.33
С	.065	.072	1.65	1.83	S	.110	—	2.79) —
D	.130	.150	3.30	3.81	U	.156	—	3.96	5 –
Е	.021	.026	0.53	0.66	aaa		.004		0.10
F	.026	.044	0.66	1.12	bbb		.005		0.13
G	.038	—	0.97	_					
Н	.069	—	1.75	_					
J	.160	.180	4.06	4.57					
К	.273	.285	6.93	7.24					
L	.245	.255	6.22	6.48					
N	.230	.240	5.84	6.10					
Р	.000	.008	0.00	0.20					
© I	FREESCALE SEI ALL RIGH1	MICONDUCTOR, IS RESERVED.	INC.	MECHANICA	L 0U ⁻	ΓLINE	PRINT VERS	SION NO	T TO SCALE
TITLE:						DOCUMENT NO: 98ASA00476D REV: 0			REV: O
PLD-1.5W					Ī	CASE NUMBER: 2297-01 14 JUN 2012			14 JUN 2012
						STANDAF	RD: NON-JEDEC	;	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to Software & Tools on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Nov. 2013	Initial Release of Data Sheet
1	Sept. 2014	 Tape and Reel information: corrected tape width information from 13-inch reel to 7-inch reel to reflect actual reel size, p. 1 Changed operating frequency from 728–2700 MHz to 728–3600 MHz due to expanded device frequency capability resulting from additional test data, p. 1
2	Nov. 2014	 Added 3400-3600 MHz performance information as follows: Typical Frequency Band table, p. 1 Fig. 32, Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 1.26 W Avg., p. 17 Fig. 33, Single-Carrier W-CDMA Power Gain, Drain Efficiency and ACPR versus Output Power, p. 17 Fig. 34, Broadband Frequency Response, p. 17
3	Dec. 2015	 Table 1, Maximum Ratings: corrected operating junction temperature range upper limit, p. 2 Table 5, Electrical Characteristics, On Characteristics V_{DS(on)}: updated I_D unit of measure to mAdc to reflect actual unit of measure, p. 2 Added Ordering Information Table 6, p. 3