

SPECIFICATION

Part No.	:	ALA.01.07.0095A
Product Name	:	1575MHz GPS-GALILEO Ceramic Active Loop Module
Features	:	16dB One Stage GPS/GALILEO PCB Dims: 45*10*2.3mmm RoHS Compliant

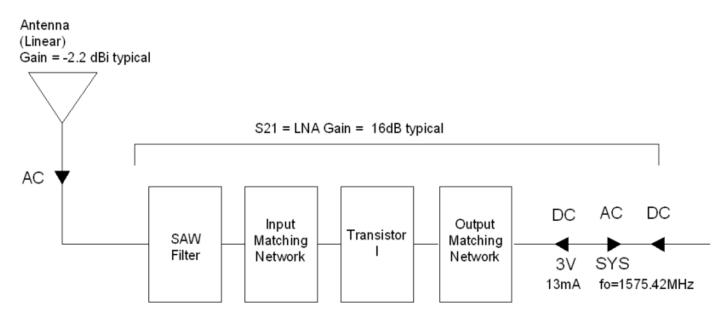
1. Introduction

The active loop antenna ALA.01 is best suited for applications where omni-directionality is important. The average gain is similar to an 18mm active patch antenna but in a much narrower profile, only 2.3mm at its highest point, allowing this antenna to be used perpendicular to the device main-board, or placed adjacent to the top or bottom of device main board. A one stage LNA combined with a SAW filter boosts the S/N (C/N) of the GPS/GALILEO system and helps to overcome some noise effects from today's crowded device boards that passive antennas cannot resolve.

The antenna can be placed in a plastic slot in the device housing. Alternatively, adhesive foam, hot-melt, or non-conductive screws could be used to mount the antenna. The core antenna design principle of loop current flow tends to "lock-out" a lot of surface noise from close circuitry from entering the antenna.

2. Specification

ELECTRICAL				
Frequency	1575.42 ± 1.023MHz			
Bandwidth (10dB return loss)	70MHz typical			
Peak Gain	Typ. 3.1dBi			
Avg. Gain	-2.2dBI			
Polarization	Linear			
VSWR	2 max (depends on the special environment)			
Dimension	5*3*0.5mm			
Gain (with LNA)	16 ± 4dB @ 90°			
Output Impedance	50Ω			
Polarization	Linear			
Input Voltage	Min. 2.6V, Typ. 3.0V, Max. 5.0V			
	LNA			
Frequency	1575.42 ± 1.023MHz			
Gain	Typ. 16dB @ 3V Typ. 17.8dB @ 5V			
Noise Figure	Typ. 1.3dB @ 3V			
Filter (out of band attenuation)	Saw Filter (fo=1575.42MHz) 40dB typ. fo±50MHz 45dB min. fo±100Mhz			
Output VSWR	< 2.0			
Input Voltage	$DC = 2.6 \sim 5.0V$			
Current	DC = 13mA at 3.0V			



MECHANICAL			
RF Cable	95±5mm 1.13 Coaxial Cable		
Connector	IPEX MHF(U.FL)		
Dimensions	45*10*2.3mm		
Weight	1.35±0.5g (typical)		
ENVIRONMENTAL			
Operation Temperature	-40°C to + 85°C		
Storage Temperature	-40°C to + 90°C		
Humidity	10 to 95%		

3. Performance Measurement

3.1. Block Diagram

The structure of GPS antenna module

4. Measurement Method

4.1. Chip

- a) Reflection Co-efficient Measurement
 - a. Equipment: Network Analyzer (Aglient E5071A)(Fig.1)
 - b. Item S₁₁ Log Chart(Return Loss) S₁₁ Smith Chart (impedance)

Figure 1. Network Analyzer

a) Pattern Measurement

- a. Equipment: Anechoic Chamber (Fig. 2), Network Analyzer (Aglient E8753ES)
- b.Item: Gain Pattern, Axial ratio

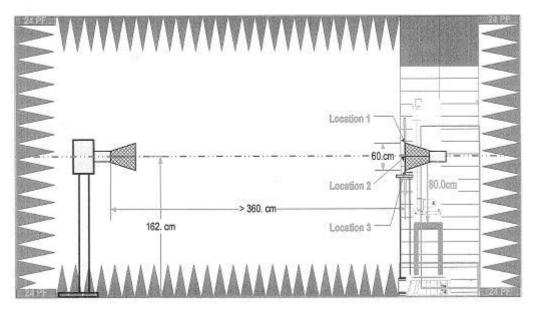


Figure 2. Quiet Room

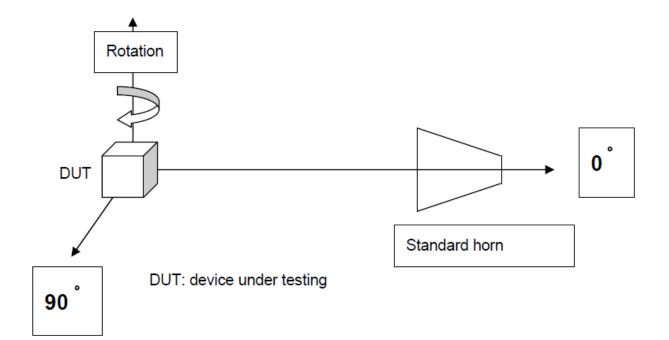


Figure 3. Schematic of measurement set-up

4.2. LNA

a) Parameter Measurement

- a. Equipment: Network Analyzer (Aglient E5071B)(Fig.4)
- b. S₁₁, S₁₂, S₂₁, S₂₂

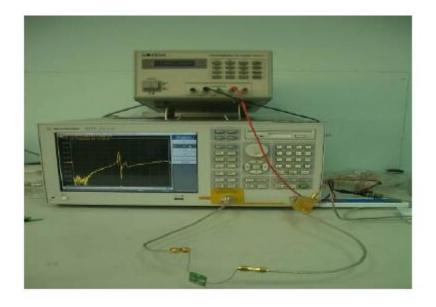
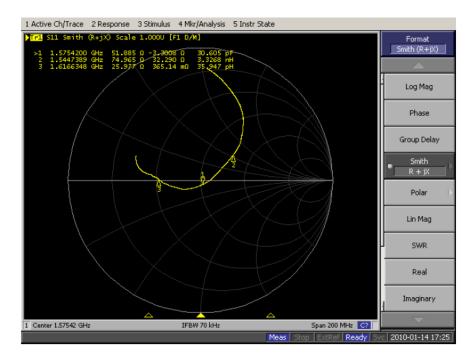
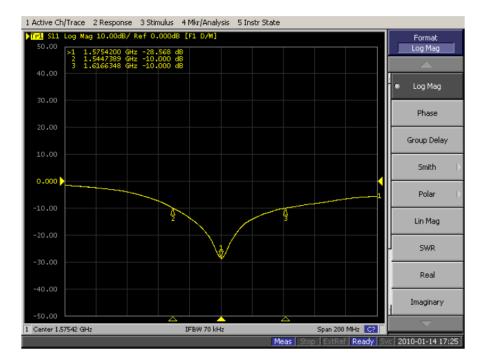


Figure 4. Network Analyzer

- a) Noise Figure Measurement
 - a. Equipment: Noise Meter (Aglient E4407B)(Fig.5)
 - b. Environment: Shielding Room (Fig. 6)
 - c. Item: N.F (Noise Figure)

Fig. 5 Noise Meter

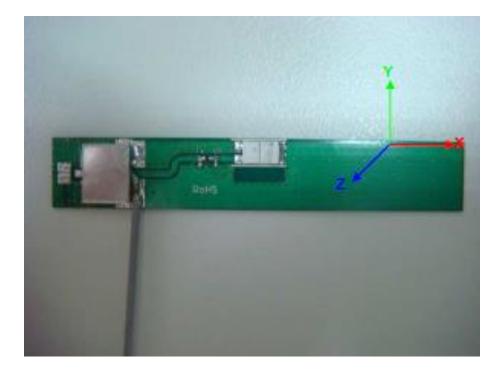

Fig.6 Shielding Room


5. Measured Values

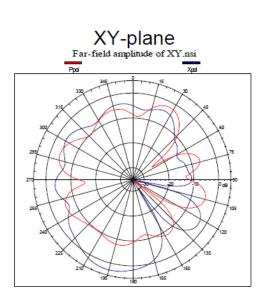
5.1. Chip

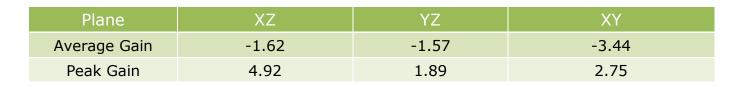
5.1.1. S₁₁ Smith Chart (Impedance)

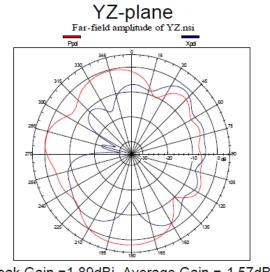
5.1.2. S_{11} Log Chart (Return Loss): Bandwidth $S_{11} < -10$ dB




$5.1.3. S_{11} VSR$

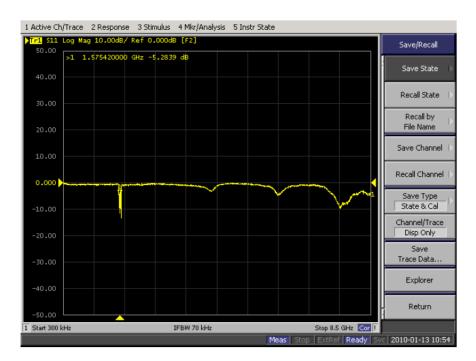

5.1.4. Radiation Patterns (Excluding LNA)



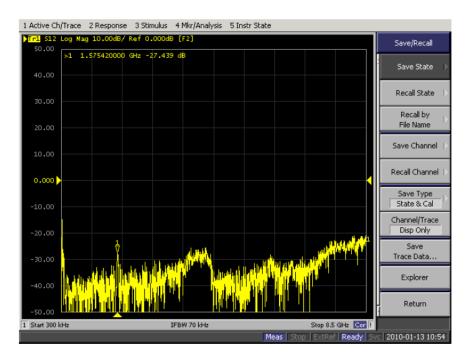

(Peak Gain =4.92 dBi, Average Gain =-1.62 dBi)

(Peak Gain =2.75dBi, Average Gain =-3.44 dBi)

Note: Total Gain = The total power of radiation pattern (exclude LNA Gain from GP8) + LNA Gain - cable loss (1.1dB/m)



(Peak Gain =1.89dBi, Average Gain =-1.57dBi)

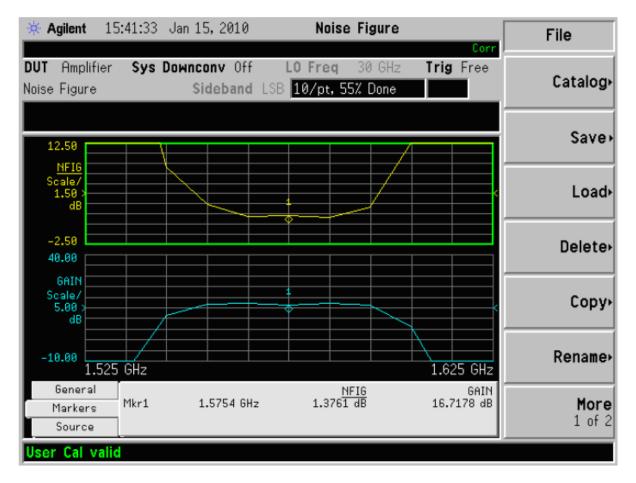


5.2. Low Noise Amplifier (LNA)

5.2.1. S₁₁ (network analyzer input power -40dB)

5.2.2. S₁₂ (network analyzer input power -40dB)

5.2.3. S₂₁ (Gain) (network analyzer input power -40dB)



5.2.4. 22 (Gain) (network analyzer input power -40dB)

5.3. Noise Figure

