

HDP Industrial Series

Remote Adhesive-Mount 868 MHz/915 MHz Antenna

The Linx HDP industrial series offers rugged remote- mount dipole antennas having excellent performance for lowpower, wide-area (LPWA) applications such as LoRaWAN®, Sigfox® and WiFi HaLow™ as well as other sub-1 GHz unlicensed spectrum applications.

The LPWA HDP industrial antennas are durable, low profile, IP67 ratable, and UV protected. They mount permanently to non-conductive surfaces using the integrated adhesive patch and connect using 2 meters of RG-174/U low-loss cable terminated in an SMA plug (male pin), or RP-SMA plug (female socket) connector for FCC Part 15 compliant applications.

FEATURES

- Performance at 868 MHz
 - VSWR: ≤ 1.8
 - Peak Gain: 0.6 dBi
 - Efficiency: 27%
- Performance at 915 MHz
 - VSWR: ≤ 1.9
 - Peak Gain: 0.4 dBi
 - Efficiency: 25%
- Low profile
 - 104.0 mm x 17.0 mm x 4.2 mm
- Durable UV protected enclosure rated at IP67 for heavy-duty outdoor use
- Low-loss RG-174/U coaxial cable for improved performance at higher frequencies
- SMA plug (male pin) or RP-SMA plug (female socket) connector

ORDERING INFORMATION

Part NumberDescriptionANT-8/9-HDP-2000-SMARemote adhesive-mount sub-1 GHz antenna with 2 m of RG-174/U low-loss coaxial
cable terminated in an SMA plug (male pin)ANT-8/9-HDP-2000-RPSRemote adhesive-mount sub-1 GHz antenna with 2 m of RG-174/U low-loss coaxial
cable terminated in an RP-SMA plug (female socket)

Available from Linx Technologies and select distributors and representatives.

APPLICATIONS

- Low-power, wide-area (LPWA) applications
 - LoRaWAN®
 - Sigfox®
 - WiFi HaLow™ (802.11ah)
- Remote sensing, monitoring and control
- Internet of Things (IoT) devices
- Gateways

TABLE 1. ELECTRICAL SPECIFICATIONS

ANT-8/9-HDP-2000		868 MHz			915 MHz	
Frequency Range		862 MHz to 876 MHz			902 MHz to 930 MHz	
VSWR (max)		1.8			1.9	
Peak Gain (dBi)		0.6			0.4	
Average Gain (dBi)		-5.9			-6.6	
Efficiency (%)		27			25	
Polarization	Linear		F	Radiation		Omnidirectional
Impedance		50 Ω		Max Power		10 W
Wavelength		1/2-wave		Electrical Type		Dipole

TABLE 2. MECHANICAL SPECIFICATIONS

ANT-8/9-HDP-2000	868 MHz / 915 MHz
Connection	SMA plug (male pin) or RP-SMA plug (female socket)
Cable	2.0 m (78.74 in) of RG-174/U low-loss coaxial cable
Operating Temp. Range	-40 °C to +85 °C
Weight	42.0 g (1.48 oz)
Dimensions	104.0 mm x 17.0 mm x 4.2 mm (4.09 in x 0.67 in x 0.17 in)

PRODUCT DIMENSIONS

Figure 1 provides dimensions of the ANT-8/9-HDP-2000. The antenna comes with 2 m (78.74 in) of RG- 174/U low-loss coaxial cable terminated by an SMA plug (male pin) or RP-SMA plug (female socket) connector.

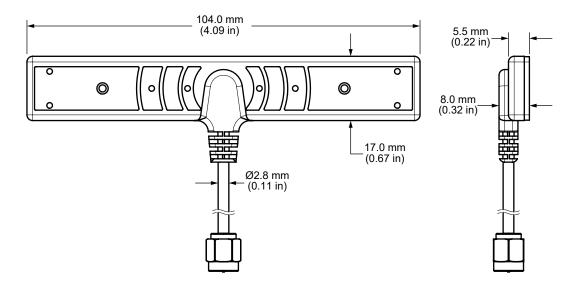


Figure 1. ANT-8/9-HDP-2000 Antenna Dimensions

ANTENNA MOUNTING

The remote adhesive-mount HDP industrial series antenna mounts permanently to non-conductive surfaces using the integrated adhesive patch. The mounting surface should be clean, dry and free of oil residue for ideal adhesion.

PACKAGING INFORMATION

The HDP industrial series antennas are packaged in bags of 50. Distribution channels may offer alternative packaging options.

VSWR

Figure 2 provides the voltage standing wave ratio (VSWR) across the antenna bandwidth. VSWR describes the power reflected from the antenna back to the radio. A lower VSWR value indicates better antenna performance at a given frequency. Reflected power is also shown on the right-side vertical axis as a gauge of the percentage of transmitter power reflected back from the antenna.

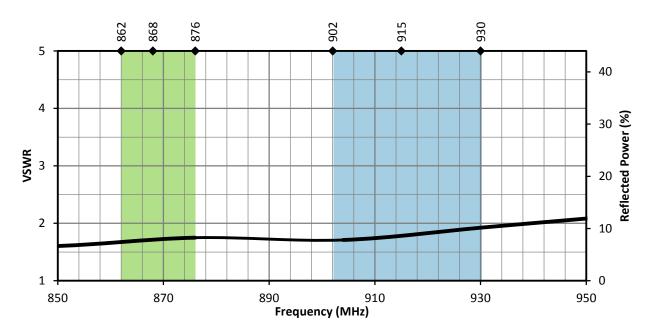


Figure 2. ANT-8/9-HDP-2000 VSWR with Frequency Band Highlights

RETURN LOSS

Return loss (Figure 3), represents the loss in power at the antenna due to reflected signals. Like VSWR, a lower return loss value indicates better antenna performance at a given frequency.

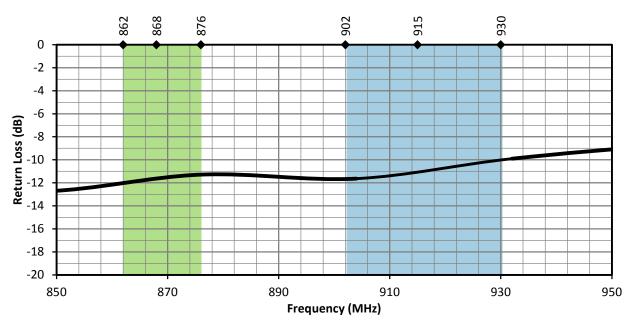


Figure 3. ANT-8/9-HDP-2000 Return Loss with Frequency Band Highlights

PEAK GAIN

The peak gain across the antenna bandwidth is shown in Figure 4. Peak gain represents the maximum antenna input power concentration across 3-dimensional space, and therefore peak performance at a given frequency, but does not consider any directionality in the gain pattern.

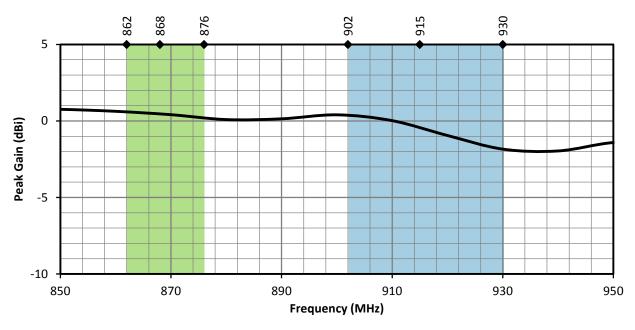


Figure 4. ANT-8/9-HDP-2000 Peak Gain with Frequency Band Highlights

AVERAGE GAIN

Average gain (Figure 5), is the average of all antenna gain in 3-dimensional space at each frequency, providing an indication of overall performance without expressing antenna directionality.

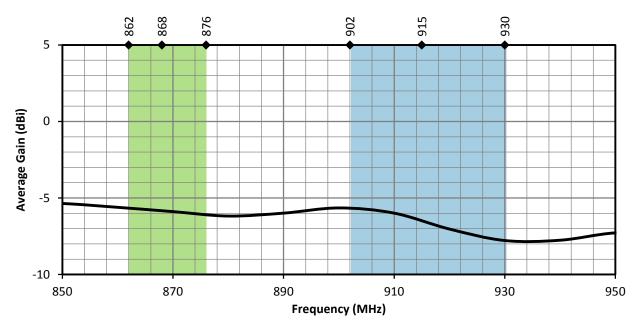


Figure 5. ANT-8/9-HDP-2000 Antenna Average Gain with Frequency Band Highlights

RADIATION EFFICIENCY

Radiation efficiency (Figure 6), shows the ratio of power delivered to the antenna relative to the power radiated at the antenna, expressed as a percentage, where a higher percentage indicates better performance at a given frequency.

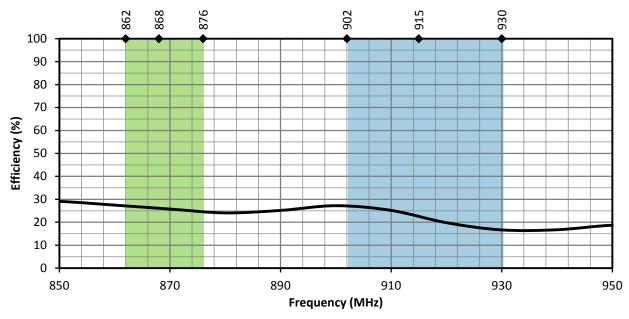


Figure 6. ANT-8/9-HDP-2000 Antenna Radiation Efficiency with Frequency Band Highlights

ANTENNA DEFINITIONS AND USEFUL FORMULAS

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes the power reflected from the antenna back to the radio. A lower VSWR value indicates better antenna performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10\left[\frac{Return \ Loss}{20}\right] + 1}{10\left[\frac{Return \ Loss}{20}\right] - 1}$$

Return Loss - Return loss represents the loss in power at the antenna due to reflected signals, measured in decibels. A lower return loss value indicates better antenna performance at a given frequency. Return Loss is easily derived from VSWR.

Return Loss =
$$-20 \log_{10} \left[\frac{\text{VSWR} - 1}{\text{VSWR} + 1} \right]$$

Efficiency (ŋ) - The total power radiated from an antenna divided by the input power at the feed point of the antenna as a percentage.

Total Radiated Efficiency - (TRE) The total efficiency of an antenna solution comprising the radiation efficiency of the antenna and the transmitted (forward) efficiency from the transmitter.

$$\text{TRE} = \eta \cdot \left(1 - \left(\frac{\text{VSWR} - 1}{\text{VSWR} + 1} \right)^2 \right)$$

Gain - The ratio of an antenna's efficiency in a given direction (G) to the power produced by a theoretical lossless (100% efficient) isotropic antenna. The gain of an antenna is almost always expressed in decibels.

$$G_{db} = 10 \log_{10}(G)$$
$$G_{dBd} = G_{dBi} - 2.51 dB$$

Peak Gain - The highest antenna gain across all directions for a given frequency range. A directional antenna will have a very high peak gain compared to average gain.

Average Gain - The average gain across all directions for a given frequency range.

Maximum Power - The maximum signal power which may be applied to an antenna feed point, typically measured in watts (W).

Reflected Power - A portion of the forward power reflected back toward the amplifier due to a mismatch at the antenna port.

$$\left(\frac{\text{VSWR}-1}{\text{VSWR}+1}\right)^2$$