

Radiation Hardened Triple 3-Input NAND Gate

with cold sparing

1 GENERAL DESCRIPTION

The **AP54RHC10** is a radiation-hardened by design **triple 3-Input NAND gate** that is ideally suited for space, medical imaging and other applications demanding radiation tolerance and high reliability. It is fabricated in a 180 nm CMOS process utilizing proprietary radiation-hardening techniques, delivering high resiliency to single-event effects (SEE) and to a total ionizing dose (TID) up to 30 krad (Si).

This device is a member of the Apogee Semiconductor AP54RHC logic family operating across a voltage supply range of **1.65 V to 5.5 V**.

Zero-power penalty[™] cold-sparing is supported, along with Class 2 ESD protection on all inputs and outputs. A proprietary output stage and robust power-on reset (POR) circuit allow the AP54RHC10 to be cold-spared in any redundant configuration with no static power loss on any pad of the device. The redundant output stage also features a high drive capability with low static power loss.

The AP54RHC10 also features a triple-redundant design throughout its entire circuitry, which allows it to be immune to single-event transients (SET) without requiring additional redundant devices.

This device provides three instances of the Boolean logical function **NAND** (Y = $\overline{A \cdot B \cdot C}$).

Ordering information may be found in Table 9 on Page 11.

1.1 FEATURES

- 1.65 VDC to 5.5 VDC operation
- Inputs tolerant up to 5.5 VDC at any V_{CC}
- Provides logic-level down translation to V_{CC}
- Extended operating temperature range (-55 °C to +125 °C)
- Proprietary **cold-sparing capability** with **zero** static power penalty
- Built-in triple redundancy for enhanced reliability
- Internal power-on reset (POR) circuitry ensures reliable power up and power down responses during hot plug and cold sparing operations
- Class 2 ESD protection (4000 V HBM, 500 V CDM)
- TID resilience of **30 krad (Si)**
- SEL resilient up to LET of 80 MeV-cm²/mg

1.2 LOGIC DIAGRAM

The AP54RHC10 logic function is shown below:

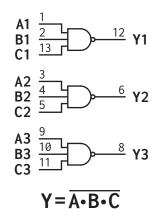


Figure 1: AP54RHC10 logic diagram

PRELIMINARY DATASHEET

Rad-Hard Triple 3-Input NAND Gate with cold sparing

CONTENTS

AP54RHC10 DATASHEET

1	Gen	eral Description	1
	1.1	Features	1
	1.2	Logic Diagram	1
2	Acro	onyms and Abbreviations	2
3	Log	ic Data	3
	3.1	Truth Table	3
4	Pin	Configuration	3
4 5		Configuration trical Characteristics	3
		-	
	Elec	trical Characteristics Absolute Maximum Ratings	4
	Elec 5.1	Absolute Maximum Ratings	4 4

	5.5 5.6	Radiation Resilience	7 7
6	Deta	ailed Description	8
7	Арр	lications Information	9
	7.1	Use in Cold-Sparing Configuration	9
	7.2	Power Supply Recommendations	9
	7.3	Application Tips	9
8	Pac	kaging Information	10
9	Ord	ering Information	11
10	Rev	ision History	11
11	Leg	al	12

LIST OF TABLES

1	Truth Table	3
2	Device Pinout	3
3	Absolute Maximum Ratings	4
4	Recommended Operating Conditions	5
5	Thermal Information	5

6	DC Electrical Characteristics	6
7	AC Electrical Characteristics	7
8	Radiation Resilience Characteristics	7
9	Ordering Information	11

LIST OF FIGURES

1	AP54RHC10 logic diagram	1
2	Device Pinout	3
3	Load Circuit	7
4	Propagation Delay	7
5	Input Pin Structure	

6	Output Pin Structure	8
7	Cold Spare Example	9
8	Package Mechanical Drawing	10
9	Part Number Decoder	11

2 ACRONYMS AND ABBREVIATIONS

ESD	Electrostatic Discharge
	Dower On Deest

- POR Power On Reset
- RHA Radiation Hardness Assurance
- SEE Single Event Effects
- SEL Single Event Latchup
- SET Single Event Transient
- TID Total Ionizing Dose
- TMR Triple Modular Redundancy
- CDM Charged-device Model
- HBM Human-body Model

DATASHEET

PRELIMINARY DATASHEET Rad-Hard Triple 3-Input NAND Gate with cold sparing

3 LOGIC DATA

3.1 TRUTH TABLE

The AP54RHC10 truth table is found in Table 1. **H** indicates HIGH logic level, **L** indicates LOW logic level and **X** indicates DON'T CARE. Subscript **n** reflects one of the three gates in the device (1 to 3).

Table 1: AP54RHC10 device truth table

I	nput	Output	
An	A _n B _n C _n		Yn
L	Х	Х	Н
Х	L	Х	Н
Х	Х	L	Н
Н	Н	Н	L

4 PIN CONFIGURATION

_		-
A1 □ 1	0 14	
B1 🗖 2	13	🗖 C1
A2 □ 3	12	□ Y1
B2 □ 4	11	□ C3
C2 □ 5	10	🗆 B3
Y2 □6	9	🗆 A3
GND \square 7	8	□ Y3
		,

Figure 2: AP54RHC10 device pinout overview

Table 2: AP54RHC10	device	pinout	description
--------------------	--------	--------	-------------

PIN NAME(S)	PIN NUMBER(S)	DESCRIPTION	
A1, B1, C1	1, 2, 13		
A2, B2, C2	3, 4, 5	Logic Inputs	
A3, B3, C3	9, 10, 11		
Y1	12		
Y2	6	Logic Outputs	
Y3	8		
V _{CC}	14	Positive Voltage Supply	
GND	7	Ground	

AP54RHC10 DATASHEET

5 ELECTRICAL CHARACTERISTICS

The sign convention for current follows JEDEC standards with negative values representing current sourced from the device and positive values representing current sunk into the device.

5.1 ABSOLUTE MAXIMUM RATINGS

Excursions beyond the values listed in Table 3 may cause permanent damage to the device. Proper function of the device cannot be guaranteed if these values are exceeded, and long-term device reliability may be affected. Functionality of the device at these values, or beyond those listed in Recommended Operating Conditions (Table 4) is not guaranteed.

All parameters are specified across the entire operating temperature range unless otherwise specified.

SYMBOL	PARAMETER		VALUE	UNITS
V _{cc}	Supply Voltage		-0.5 to +5.5	V
VI	Input voltage range		-0.5 to +5.5	V
Vo	Output voltage range		-0.5 to V _{CC} + 0.5 ⁽¹⁾	V
$I_{IK}(V_{I} < 0)$	Input clamp current		100	mA
I ₀	Continuous output current (per pin)		100	mA
I _{CC}	Maximum supply current		100	mA
V	ESD Voltage	HBM	4000	V
V _{ESD}	Lob Voltage	CDM		V
Tj	Operating junction temperature range		-55 to +150	°C
T _{STG}	Storage temperature range		-65 to +150	°C

Table 3: Absolute Maximum Ratings

 $^{(1)}\,\,V_{0}$ must remain below absolute maximum rating of V_{CC}

PRELIMINARY DATASHEET

Rad-Hard Triple 3-Input NAND Gate with cold sparing

AP54RHC10 DATASHEET

5.2 RECOMMENDED OPERATING CONDITIONS

All recommended parameters below are specified across the entire operating temperature range unless otherwise specified.

Table 4: Recommended Operating Conditions

SYMBOL	PARAMETER			MAX	UNITS
V _{cc}	Supply voltage			5.5	V
VI	Input voltage range		0	5.5	V
Vo	Output voltage range		0	V_{CC}	V
	V	/ _{cc} = 1.65 to 1.95 V	1.4	-	V
VIH	HIGH-level input voltage	/ _{cc} = 2.3 to 2.7 V	1.9	-	
VIH	V	/ _{CC} = 3.0 to 3.6 V	2.5	-	v
	V	/ _{CC} = 4.5 to 5.5 V	3.8	-	
	V	/ _{CC} = 1.65 to 1.95 V	-	0.4	
v	LOW-level input voltage	/ _{cc} = 2.3 to 2.7 V	-	0.6	v
VIL	V	/ _{CC} = 3.0 to 3.6 V	-	0.9	v
	V	/ _{CC} = 4.5 to 5.5 V	-	1.35	
	V	/ _{cc} = 1.65 to 1.95 V	-	-4	
1	HIGH-level output current	/ _{CC} = 2.3 to 2.7 V	-	-8	mA
I _{ОН}	V	/ _{CC} = 3.0 to 3.6 V	-	-16	
	V	/ _{CC} = 4.5 to 5.5 V	-	-24	
	V	/ _{CC} = 1.65 to 1.95 V	-	4	
	LOW-level output current	/ _{cc} = 2.3 to 2.7 V	-	8	mA
I _{OL}	V	/ _{CC} = 3.0 to 3.6 V	-	16	ША
	V	/ _{cc} = 4.5 to 5.5 V	-	24	
	V	/ _{cc} = 1.65 to 1.95 V	-	1000	
t _r , t _f	Input rise or fall time V	/ _{cc} = 2.3 to 2.7 V	-	600	ns
	(10% - 90%)	/ _{CC} = 3.0 to 3.6 V	-	500	115
	V	/ _{CC} = 4.5 to 5.5 V	-	400	

Table 5: Thermal Information

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
Tj	Operating junction temperature		-	+125	°C
R _{θJA}	Junction to ambient thermal resistance	-	100	-	°C/W

AP54RHC10 DATASHEET

PRELIMINARY DATASHEET Rad-Hard Triple 3-Input NAND Gate with cold sparing

5.3 STATIC CHARACTERISTICS

All parameters are specified across the entire operating temperature range unless otherwise specified.

Table 6: DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	V _{cc}	MIN	ТҮР	MAX	UNITS
		I ₀ = 100 μA	1.65 to 5.5 V	-	0.02	0.05	V
		I ₀ = 1 mA	1.65 to 5.5 V	-	0.05	0.1	V
			2.3 V	-	0.3	0.6	V
		I ₀ = 4 mA	3.0 V	-	0.2	0.4	V
			4.5 V	-	0.2	0.4	V
			2.3 V	-	0.6	1.0	V
Vol	LOW-level	I ₀ = 8 mA	3.0 V	-	0.4	0.8	V
	output voltage		4.5 V	-	0.3	0.6	V
		$1 - 16 m \Lambda$	3.0 V	-	1.0	1.4	V
		I ₀ = 16 mA	4.5 V	-	1.1	1.5	V
		I ₀ = 24 mA	4.5 V	-	1.1	1.5	V
	HIGH-level output voltage	I ₀ = -100 μA	1.65 to 5.5 V	V _{CC} - 0.1	V _{CC} - 0.02	-	V
		I ₀ = -1 mA	1.65 to 5.5 V	V _{CC} - 0.15	V _{CC} - 0.08	-	V
		I ₀ = -4 mA	2.3 V	1.8	2.0	-	V
			3.0 V	2.6	2.8	-	V
			4.5 V	4.2	4.4	-	V
		I ₀ = -8 mA	2.3 V	1.4	1.7	-	V
V _{OH}			3.0 V	2.2	2.5	-	V
			4.5 V	3.9	4.1	-	V
		1 - 16 m	3.0 V	1.5	2.0	-	V
		I ₀ = -16 mA	4.5 V	3.3	3.8	-	V
		I ₀ = -24 mA	4.5 V	3.0	3.5	-	V
I _{CC}	Quiescent supply current	V _I = V _{CC} or GND I _O = 0 mA	5.5 V	_	85	130	μA
l _l	Input current	$V_{I} = V_{CC} \text{ or } GND$	1.65 to 5.5 V	-	-	±1	μA
I _{OFF}	Powerdown leakage current ^(1,3)	$V_1 = V_{CC}$ or GND	OFF ⁽²⁾	_	_	5	μA

⁽¹⁾ into any input or output port

 $^{(2)}$ V_{CC} is disconnected or at GND potential

⁽³⁾ guaranteed by design

AP54RHC10

DATASHEET

5.4 DYNAMIC CHARACTERISTICS

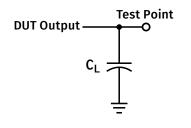
All parameters are specified across the entire operating temperature range unless otherwise specified.

Table 7: AC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	V _{cc}	MIN	ТҮР	MAX	UNITS
t _{pd} ⁽¹⁾		$C_{L} = 50 \text{ pF} \qquad \begin{array}{c c} 4.5 \text{ to } 5.5 \text{ V} & - & 7.6 \\ \hline 3.0 \text{ to } 3.6 \text{ V} & - & 9 \\ \hline 2.3 \text{ to } 2.7 \text{ V} & - & 11 \\ \hline 1.65 \text{ to } 1.95 \text{ V} & - & 17 \end{array}$	4.5 to 5.5 V	-	7.6	11	ns
	Propagation Delay		3.0 to 3.6 V	-	9	13	ns
	(Input A_n, B_n or C_n to Output Y _n)		2.3 to 2.7 V	-	11	15	ns
			17	25	ns		
C _{IN}	Input Capacitance ⁽²⁾	$V_{I} = V_{CC} \text{ or } GND$	1.65 to 5.5 V	-	2	4	рF
C _{PD}	Power dissipation	I ₀ = 0 mA	5.5 V	_	40	-	рF
	capacitance ⁽²⁾	f = 1 MHz	5.5 V		40	т о	Ч

 $^{(1)}$ equivalent to $t_{\text{PLH}}, t_{\text{PHL}}$

⁽²⁾ guaranteed by design


5.5 RADIATION RESILIENCE

For detailed radiation testing reports, please contact Apogee Semiconductor at sales@apogeesemi.com.

Table 8: Radiation	Resilience	Characteristics
--------------------	------------	-----------------

PARAMETER	CONDITIONS	VALUE	UNITS
Total Ionizing Dose (TID)	Please contact Apogee Semiconductor for test report.	30	krad (Si)
SEE LET Threshold	Please contact Apogee Semiconductor for test report.	<80	MeV-cm ² /mg

5.6 CHARACTERISTICS MEASUREMENT INFORMATION

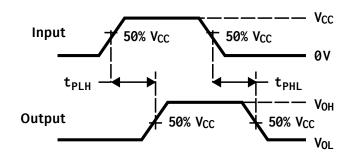
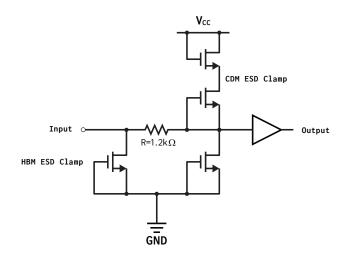


Figure 3: Load circuit for outputs

Figure 4: Propagation delay measurement

PRELIMINARY DATASHEET

Rad-Hard Triple 3-Input NAND Gate with cold sparing


AP54RHC10 DATASHEET

6 DETAILED DESCRIPTION

The AP54RHC10 is a triple 3-Input NAND gate intended to perform the Boolean function **NAND** (Y = $\overline{A \cdot B \cdot C}$) in positive logic. Designed to operate from a wide supply voltage of 1.65 to 5.5 V, it has fully redundant input and output stages providing for superior resiliency to single event effects.

The output and input stages are constructed with transient activated clamps (Figure 5, 6) that prevent inadvertent biasing of the V_{CC} power rail through parasitic diodes inherent to conventional input, output, and ESD circuits. The IC also incorporates an internal power-on reset (POR) circuit that prevents the output from driving erroneous results during power-on, and guarantees correct operation at power supply voltages as low as 1.65 V. While the supply is ramping, the POR holds the output buffer in tri-state, a feature that prevents unwanted DC current during cold sparing on input and output pins.

The AP54RHC family's I/O protection circuitry allows for cold sparing configurations as it avoids a leakage current penalty on inputs and outputs while in a power-down state. This can result in considerable power savings in systems where multiple-path redundancy is employed. The ESD clamp circuits for this logic family are designed to support Class 2 ESD levels of 4 kV HBM and 500 V CDM.

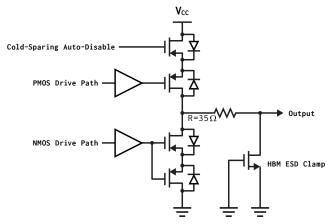


Figure 5: Details of input pin structure

Figure 6: Details of output pin structure

Rad-Hard Triple 3-Input NAND Gate with cold sparing

DATASHEET

AP54RHC10

7 APPLICATIONS INFORMATION

7.1 USE IN COLD-SPARING CONFIGURATION

As the AP54RHC family is radiation-hardened by design and includes internal TMR, it can be utilized in highreliablity applications without additional supporting circuitry or devices. Nonetheless, some application requirements call for fully-redundant designs, where an "A" and a "B" device are required, often on separate power rails.

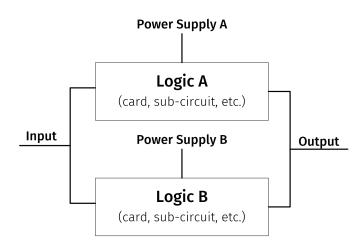


Figure 7: Two-path cold-sparing configuration.

With the cold-sparing capability of the AP54RHC family, fully redundant "A" and "B" functions may be placed in parallel (as seen in Figure 7) running off redundant power supplies. The inputs and outputs on each one of these functions are assumed to be based on the AP54RHC family, allowing for direct parallel connection without unwanted leakage current paths during cold sparing. In the event of a failure in power supply A or within function A, the system can simply shut power supply A off and switch on power supply B, without requiring additional input or output switching or configuration changes.

7.2 POWER SUPPLY RECOMMENDATIONS

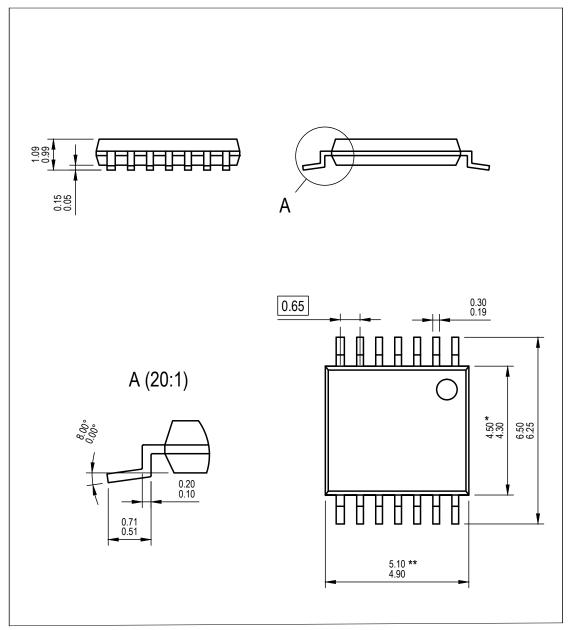
This device can operate at any voltage within the range specified in Table 4 Recommended Operating Conditions.

At a minimum, a 16 VDC (or higher), X7R-rated 0.1 μF ceramic decoupling capacitor should be placed near (within 1 cm) the V_{CC} pin of the device.

7.3 APPLICATION TIPS

Unused **inputs** must **not** be left floating. They may be connected to either a low (GND) or high (V_{CC}) bias to provide a known state at the input of the device. Resistors may be used to tie off unused inputs. In the event of a design change, such resistors can be removed, thereby allowing use of the inputs without having to cut traces on the PCB.

An unused **output** may be left floating. It is suggested that it be routed to a test point or similar accessible structure in case the gate needs to be utilized as part of a design revision.


AP54RHC10 DATASHEET

PRELIMINARY DATASHEET

Rad-Hard Triple 3-Input NAND Gate with cold sparing

8 PACKAGING INFORMATION

Notes:

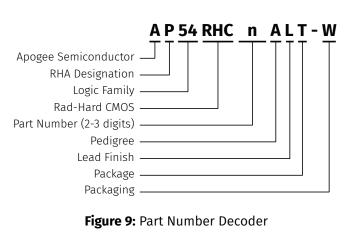
1. All linear dimensions are in millimeters. Dimensioning and tolerancing are as per ISO/TS 128-71:2010 2. The part is compliant with JEDEC MO-153 specifications.

* Body width does **not** include interlead flash. Interlead flash shall not exceed 0.25 mm each side. ** Body length does **not** include mold flash, protrusion, or gate burrs. Mold flash, protrusions, and gate burrs shall not exceed 0.15 mm on each side.

Figure 8: Package Mechanical Detail

Rad-Hard Triple 3-Input NAND Gate

with cold sparing


AP54RHC10 DATASHEET

9 ORDERING INFORMATION

Example part numbers for the AP54RHC10 are listed in Table 9. The full list of options for this part can be found in Figure 9. Please contact Apogee Semiconductor sales at sales@apogeesemi.com for further information on sampling, lead time and purchasing on specific part numbers.

Table 9: AP54RHC10 Ordering Information

DEVICE	DESCRIPTION	PACKAGE
AP54RHC10ELT-W	Radiation Hardened Triple 3-Input NAND Gate (for evaluation only)	Plastic TSSOP-14
AP54RHC10ALT-T	Radiation Hardened Triple 3-Input NAND Gate (30 krad (Si))	Plastic TSSOP-14

- 1. RHA Designation
- **P** 30 krad (Si)
- 2. Part Number
 - _ 10 (Triple 3-Input NAND Gate)
- 3. Pedigree
 - **A** -55 to +125 °C (Burn-in)
 - **B** -55 to +125 °C (No burn-in)
 - E 25 °C Functional Test Only (Evaluation)
- 4. Lead Finish
 - L Tin-Lead (SnPb)
 - **T** Matte Tin (Sn)
- 5. Package
 - **T** 14-pin Thin Shrink Small Outline Package (TSSOP)
- 6. Packaging
 - **W** Waffle Pack
 - J JEDEC Tray
 - **R** Tape and Reel
 - T Tube

10 REVISION HISTORY

REVISION	DESCRIPTION	
A03	Revamped static and dynamic characteristics with new test data.	2021-03-01
A02	Correct usage of VCC symbol and update Static and Dynamic characteristics.	
A01	Initial public release.	2020-02-29
A00	Initial internal release.	2019-07-05

For the latest version of this document, please visit https://www.apogeesemi.com.