

AP9234L

HIGH ACCURACY SINGLE CHIP SOLUTION FOR 1-CELL Li+ BATTERY PACK

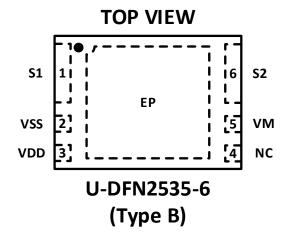
Description

The AP9234L family is a single-chip protection solution specially designed for one-cell Li^+ rechargeable battery pack applications. It includes a one-cell, high-accuracy Li^+ battery-protection controller and dual N-channel, ultralow $R_{SS(ON)}MOSFETs$ with common drain.

The AP9234L provides rich battery protection features and can turn off the N-channel MOSFETs by detecting overcharge voltage/current, overdischarge voltage/current, or load short circuit. The AP9234L has a built-in fixed delay time to save external components.

The AP9234L integrates highly accurate detection circuits and can compensate according to internal MOSFET $R_{SS(ON)}$ performance to ensure extremely high-charge/discharge current accuracy under the full operating temperature range.

The AP9234L is available in the U-DFN2535-6 (Type B) package.

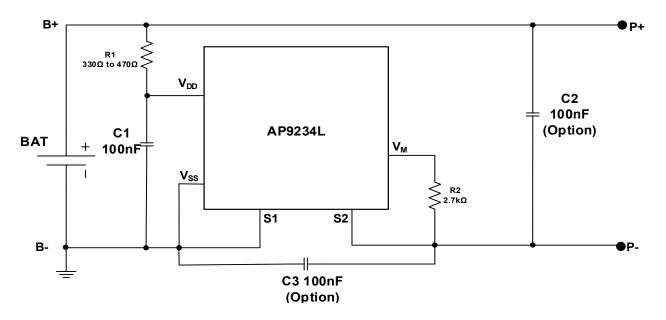

Features

- High-Voltage CMOS Process, Up to 24V (V_{DD} to V_M)
- Low Quiescent Current (+25°C)
 - Operation Mode: 3.0µA Typ. V_{DD} = 3.5V
 - Power-Down Mode: 0. 1µA Max. V_{DD} = 1.8V
- High Accuracy Voltage Detection (+25°C)
 - Overcharge Detection Voltage: 3.5V to 4.5V,
 5mV/step, Accuracy -15mV, +25mV
 - Overcharge Release Voltage: 3.4V to 4.4V, 50mV/step, Accuracy ±50mV
 - Over-discharge Detection Voltage: 2.0V to 3.4V, 10mV/step, Accuracy ±35mV
 - Over-discharge Release Voltage: 2.7V to 3.4V,
 40mV/step, Accuracy ±65mV (No Power-down Mode)
 - Discharge Overcurrent Detection Voltage: 0.03V to 0.19V, 10mV/step, Accuracy ±12mV
 - Load Short Detection Voltage: 0.16V to 0.32V, 50mV/step, Accuracy ±50mV
 - Charge Overcurrent Detection Voltage: -0.19V to -0.03V, 10mV/step, Accuracy ±12mV
 - Overvoltage Charge Detection Voltage: 8.0V,
 Fixed, Accuracy ±2.0V
 - Overvoltage Charge Release Voltage: 7.3V,
 Fixed, Accuracy ±2.0V
- High Accuracy Current Detection (+25°C)
 Charge/Discharge Current Limit: ±2A
- Built-in Delay Time (+25°C), Accuracy ±20%
- Auto-wake-up Function (No Power-down)

Notes:

- 0V Battery Charge Selectable (Permission or Inhibition)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments


Applications

Li[†] Rechargeable Battery Pack

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

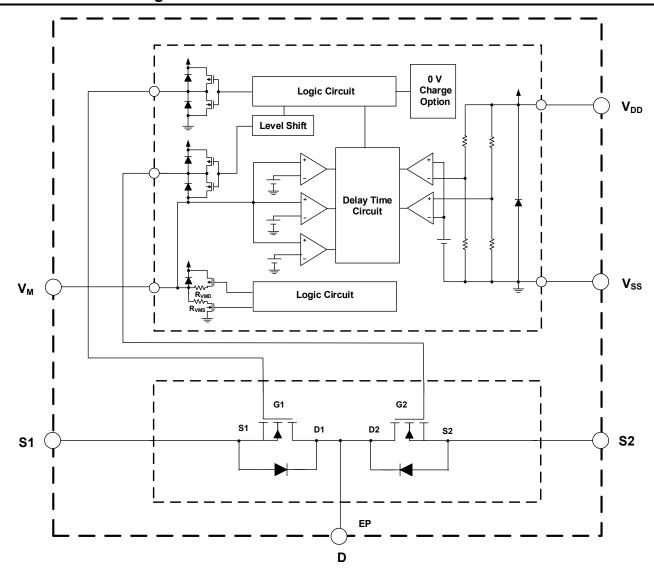
Typical Application Circuit (Note 4)

Note:

4. R1 and C1 are used to stabilize the supply voltage of the AP9234L. The recommended range of R1 value is 330Ω to 470Ω and C1 value is 10nF to 1000nF, typical value is 100nF. R2 should be connected between P- to V_M sense terminal to monitor the status of charger and the charge/discharge current. The R2 should be between 300Ω and 4kΩ, typical value is 2.7kΩ. R1 and R2 are also used as current limit resistors if the battery or charger is connected reversely. Polarity reversing may cause the power consumption of R1 and R2 to go over their power dissipation rating, therefore R1 and R2 values should be selected appropriately for the actual application. If R2 is more than 4kΩ resistor, charge may not be off due to the voltage drop on R2.

For power down mode (please contact Diodes Incorporated sales team), when first connecting AP9234L system board to the battery, it is necessary to use charger or to short P- to the battery negative polarity. Once the AP9234L is activated, the charger or connection can be removed, otherwise the battery cannot discharge current through system board.

The values selected should follow the recommended typical range mentioned above.



Pin Descriptions

Pin Number	Pin Name	Function
1	S1	Source pin of discharging MOSFET, connecting this pin to battery negative pole
2	V _{SS}	Negative power input
3	V_{DD}	Positive power supply pin, connecting this pin to battery positive pole through R1
4	NC	No Connect, leave it open
5	V _M	Charger negative input pin, short this pin to S2 pin through R2
6	S2	Source pin of charging MOSFET, connecting this pin to charge negative input
EP	D	Exposed PAD is common drain of charge and discharge MOSFET, so in PCB layout, prefer to use large copper area to cover this pad for better thermal dissipation, then leave it open

Functional Block Diagram

Absolute Maximum Ratings (Notes 5 & 6)

Symbol	Parameter	Rating	Unit
V_{DD}	Supply Voltage (Between V _{DD} and V _{SS})	-0.3 to 12	V
V_{DS}	DS Terminal Input Voltage	-0.3 to V _{DD} +0.3	V
V_{DM}	Charge Input Voltage (Between V _{DD} and V _M for Protection Chip)	-0.3 to 24	V
V _{DSS}	MOSFET Drain-to-Source Voltage	24	V
V _{GSS}	MOSFET Gate-to-Source Voltage	±12	V
1	Continuous Drain Current, V _{GS} = 4.5V, T _A = +25°C	9.0	Α
Ι _D	Continuous Drain Current, V _{GS} = 4.5V, T _A = +70°C	7.1	Α
TJ	Maximum Junction Temperature	+150	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C

Notes:

- 5. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 6. Ratings apply to ambient temperature at +25°C. The JEDEC High-K board design used to derive this data was a 2in × 2in multilayer board with 2oz internal power and ground planes and 2-ounce copper traces on the top and bottom of the board.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V_{DD}	Supply Voltage (between V _{DD} and V _{SS})	1.5	5.5	V
V_{DM}	Charge Input Voltage (between V _{DD} and V _M)	-0.3	5.5	V
T _A	Operating Ambient Temperature	-40	+85	°C

$\textbf{Electrical Characteristics} \ \, (T_{A} = +25^{\circ}C, \, V_{DD} = 3.5V, \, V_{SS} = 0V, \, R1 = 220\Omega, \, R2 = 1.0k\Omega, \, C1 = 100nF, \, unless \, otherwise \, specified.)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CU}	Overcharge Detection Voltage	V _M = 0V	V _{CU} - 0.015	V _{CU}	V _{CU} + 0.025	V
V _{CL}	Overcharge Release Voltage	$V_{CL} \neq V_{CU}$	V _{CL} - 0.050	V _{CL}	V _{CL} + 0.050	V
VCL	Overcharge Nelease Voltage	V _{CL} = V _{CU}	V _{CL} - 0.015	V _{CL}	V _{CL} + 0.025	V
V_{DL}	Overdischarge Detection Voltage	V _M = 0V	V _{DL} - 0.035	V_{DL}	V _{DL} + 0.035	٧
V_{DU}	Overdischarge Release Voltage	$V_{DU} \neq V_{DL}$	V _{DU} - 0.065	V_{DU}	V _{DU} + 0.065	٧
V DU	Overdischarge Nelease Vollage	$V_{DU} = V_{DL}$	V _{DU} - 0.035	V_{DU}	V _{DU} + 0.035	V
V_{DOC}	Discharge Overcurrent Detection Voltage	V _{DD} = 3.5V	V _{DOC} - 0.012	V_{DOC}	V _{DOC} + 0.012	٧
V _{SHORT}	Load Short Detection Voltage	V _{DD} = 3.5V	V _{SHORT} - 0.100	V _{SHORT}	V _{SHORT} + 0.100	٧
V _{COC}	Charge Overcurrent Detection Voltage	V _{DD} = 3.5V	V _{COC} - 0.012	V _{COC}	V _{COC} + 0.012	٧
ICC (Pow	ver Down Function)					
I _{CC}	Current Consumption during Operation	V _{DD} = 3.5V, V _M = 0V	_	3	4.5	μA
I _{PDN}	Current Consumption during Power Down mode	V _{DD} = 1.8V, V _M Pin Floating	_	_	0.1	μΑ
ICC (Auto	o-Wakeup Function)					
Icc	Current Consumption during Operation	V _{DD} = 3.5V, V _M = 0V	_	3	4.5	μΑ
I _{AUTO}	Current Consumption during Auto-Wakeup Mode	V _{DD} = 1.8V, V _M Pin Floating	_	3.5	5.5	μΑ
R _{VMD}	Resistance between V _M Pin and V _{DD} Pin	V _{DD} = 1.8V, V _M = 0V	150	300	500	kΩ
R _{VMS}	Resistance between V _M Pin and V _{SS} Pin	V _{DD} = 3.5V, V _M = 1.0V	10	30	50	kΩ
V _{0CHA}	0V Battery Charge Starting Charge Voltage	0V battery charging "available"	1.2	_	_	٧
Voinh	0V Battery Charge Inhibition Battery Voltage	0V battery charging "unavailable"	_	_	0.45	٧
Vovchg	Overvoltage Charge Detection Voltage	V _{DD} = 3.5V	6.0	8.0	10.0	٧
Vovchgr	Overvoltage Charge Release Voltage	V _{DD} = 3.5V	5.3	7.3	9.3	٧
tcu	Overcharge Detection Delay Time	V _{CC} = 3.6->4.5V	800	1000	1200	ms
t _{CUR}	Overcharge Release Delay Time	V _M = 0.0V	1.6	2	2.4	ms
t _{DL}	Overdischarge Detection Delay Time	V _{CC} = 3.6->2.0V	92	115	138	ms
t _{DLR}	Overdischarge Release Delay Time	V _M = 0.0V	1.6	2	2.4	ms
t _{DOC}	Discharge Overcurrent Detection Delay Time	V _{CC} = 3.6V	8	10	12	ms
t _{DOCR}	Discharge Overcurrent Release Delay Time	V _M = 0.0V	1.6	2.0	2.4	ms
tshort	Load Short Detection Delay Time	V _{CC} = 3.6V	288	360	432	μs
tcoc	Charge Overcurrent Detection Delay Time	V _{CC} = 3.6V	8	10	12	ms
t _{COCR}	Charge Overcurrent Release Delay Time	V _M = 0.0V	1.6	2	2.4	ms

Electrical Characteristics (Cont. Notes 7 & 8)

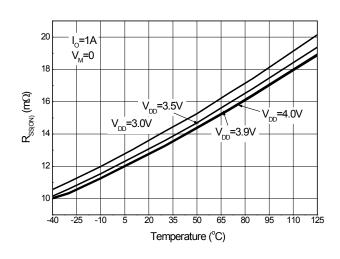
 $(T_A = +25^{\circ}C, V_{DD} = 3.5V, V_{SS} = 0V, R1 = 220\Omega, R2 = 1.0k\Omega, C1 = 100nF, unless otherwise specified.)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20V, V _{GS} = 0	_	_	1.0	μA
Rss(ON)1	Static Source-Source On-Resistance 1	V _{DD} = 4.0V, I _D = 1.0A	10.4	13	15.2	mΩ
R _{SS(ON)2}	Static Source-Source On-Resistance 2	V _{DD} = 3.9V, I _D = 1.0A	10.6	13.2	15.5	mΩ
R _{SS(ON)3}	Static Source-Source On-Resistance 3	V _{DD} = 3.0V, I _D = 1.0A	11.1	13.9	16.3	mΩ
V _{SD}	Diode Forward Voltage	V _{GS} = 0V, I _S = 1A	_	0.75	1.0	V
I _{CHARGE1}	Charge Current Limit 1	V _{CC} = 4.0V	-4.01	-5.62	-8.17	Α
I _{CHARGE2}	Charge Current Limit 2	V _{CC} = 3.9V	-3.94	-5.53	-8.02	Α
I _{CHARGE3}	Charge Current Limit 3	V _{CC} = 3.0V	-3.74	-5.25	-7.66	Α
I _{DISCHARGE1}	Discharge Current Limit 1	V _{CC} = 4.0V	3.42	4.92	7.31	Α
I _{DISCHARGE2}	Discharge Current Limit 2	V _{CC} = 3.9V	3.35	4.85	7.17	Α
I _{DISCHARGE3}	Discharge Current Limit 3	V _{CC} = 3.0V	3.19	4.60	6.85	Α

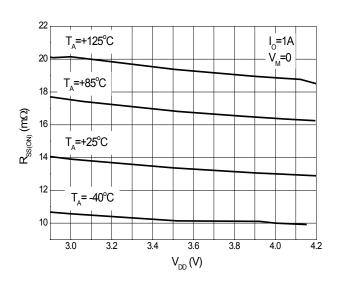
Notes:

^{7.} In case of gate-source voltage of charging MOSFET is 0V. In case of gate-source voltage of discharging MOSFET is 0V. 8. These specifications are guaranteed by design—will not be tested in production.

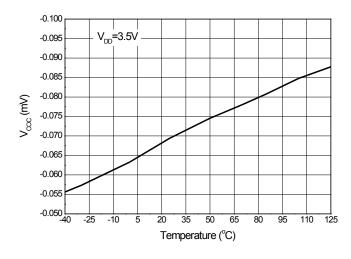
Electrical Characteristics (Cont.)

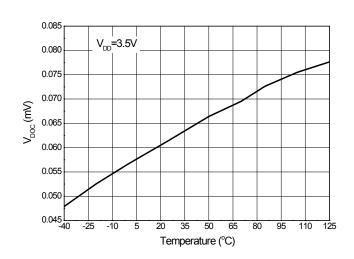

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V_{DD} = 3.5\text{V}, V_{SS} = 0\text{V}, R1 = 220\Omega, R2 = 1.0k\Omega, C1 = 100nF, unless otherwise specified.)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CU}	Overcharge Detection Voltage	V _M = 0V	V _{CU} - 0.050	Vcu	V _{CU} + 0.040	٧
V	Overcharge Release Voltage	$V_{CL} \neq V_{CU}$	V _{CL} - 0.070	V_{CL}	V _{CL} + 0.060	V
V _{CL}	Overthalige Release Voltage	V _{CL} = V _{CU}	V _{CL} - 0.050	V_{CL}	V _{CL} + 0.040	>
V_{DL}	Overdischarge Detection Voltage	V _M = 0V	V _{DL} - 0.080	V_{DL}	V _{DL} + 0.080	٧
V	Overdisch avec Deleges Velkere	$V_{DU} \neq V_{DL}$	V _{DU} - 0.150	V_{DU}	V _{DU} + 0.190	>
V _{DU}	Overdischarge Release Voltage	$V_{DU} = V_{DL}$	V _{DU} - 0.080	V_{DU}	V _{DU} + 0.080	>
V _{DOC}	Discharge Overcurrent Detection Voltage	V _{DD} = 3.5V	V _{DOC} - 0.030	V_{DOC}	V _{DOC} + 0.030	٧
V _{SHORT}	Load Short Detection Voltage	V _{DD} = 3.5V	V _{SHORT} - 0.10	V _{SHORT}	V _{SHORT} + 0.10	٧
V _{COC}	Charge Overcurrent Detection Voltage	V _{DD} = 3.5V	V _{COC} -0.040	V _{COC}	V _{COC} + 0.040	V
ICC(Power Dow	n Function)					
I _{CC}	Current Consumption during Operation	V _{DD} = 3.5V, V _M = 0V	1	3	7	μA
I _{PDN}	Current Consumption during Power Down Mode	V _{DD} = 1.8V, V _M Pin Floating	_	_	1	μΑ
ICC (Auto-Wake	eup Function)					
I _{CC}	Current Consumption during Operation	V _{DD} = 3.5V, V _M = 0V	1	3	7	μΑ
I _{AUTO}	Current Consumption during Auto-Wakeup Function	V _{DD} = 1.8V, V _M Pin Floating	_	_	8	μA
R _{VMD}	Resistance between V _M Pin and V _{DD} Pin	V _{DD} = 1.8V, V _M = 0V	100	300	650	kΩ
R _{VMS}	Resistance between V _M Pin and V _{SS} Pin	V _{DD} = 3.5V, V _M = 1.0V	5	30	65	kΩ
V _{0CHA}	0V Battery Charge Starting Charge Voltage	0 V battery charging "available"	1.2	_	_	٧
V _{0INH}	0V Battery Charge Inhibition Battery Voltage	0 V battery charging "unavailable"	_	_	0.3	٧
Vovchg	Overvoltage Charge Detection Voltage	V _{DD} = 3.5V	5.5	8.0	10.5	V
Vovchgr	Overvoltage Charge Release Voltage	V _{DD} = 3.5V	5.0	7.3	9.5	V
tcu	Overcharge Detection Delay Time	V _{CC} = 3.6->4.5V	600	1000	1400	ms
tcur	Overcharge Release Delay Time	V _M = 0.0V	1.2	2	2.8	ms
t _{DL}	Overdischarge Detection Delay Time	V _{CC} = 3.6->2.0V	69	115	161	ms
t _{DLR}	Overdischarge Release Delay Time	V _M = 0.0V	1.2	2	2.8	ms
t _{DOC}	Discharge Overcurrent Detection Delay Time	V _{CC} = 3.6V	6	10	14	ms
tDOCR	Discharge Overcurrent Release Delay Time	V _M = 0.0V	1.2	2	2.8	ms
tshort	Load Short Detection Delay Time	V _{CC} = 3.6V	216	360	504	μs
tcoc	Charge Overcurrent Detection Delay Time	V _{CC} = 3.6V	6	10	14	ms
tcocr	Charge Overcurrent Release Delay Time	V _M = 0.0V	1.2	2	2.8	ms



Performance Characteristics (Note 9)


R_{SS(ON)} Characteristics


R_{SS(ON)} Characteristics

Charge Overcurrent Detection Voltage

Discharge Overcurrent Detection Voltage

Note:

Charge/Discharge overcurrent voltage detection are designed to be in accordance with performance of internal MOSFET under full temperature. These specifications are guaranteed by design; will not be tested in production.

Application Information

Operation Mode

Normal Status

The AP9234L monitors the battery voltage between the V_{DD} pin and V_{SS} pin as well as the voltage difference between the V_M pin and V_{SS} pin to control battery charging and discharging. When the battery voltage is between overdischarge detection voltage (V_{DL}) and overcharge detection voltage (V_{CU}) and the V_M pin voltage is between the charge overcurrent detection voltage (V_{COC}) and discharge overcurrent detection voltage (V_{DC}), the AP9234L will turn on discharging and charging MOSFET then the battery can charge and discharge freely in this condition. R_{VMD} does not connect to V_{DD} pin and R_{VMS} does not connect to V_{SS} pin in this status.

Overcharge Status

When the battery voltage is more than V_{CU} during charging status and the detection lasts for the overcharge detection delay time (t_{CU}) or longer, the AP9234L turns off the charging MOSFET to stop charging. R_{VMD} and R_{VMS} are not connected in overcharge status.

When V_M pin voltage is lower than V_{DOC} and battery voltage falls below V_{CL} , the AP9234L will release from overcharge status.

When V_M pin voltage is equal or more than V_{DOC} and battery voltage falls below V_{CU}, the AP9234L will release from overcharge status.

Overdischarge Status

When the battery voltage is less than V_{DL} during discharging status and detection continues for the overdischarge detection delay time (t_{DL}) or longer, the AP9234L turns off the discharging MOSFET to stop discharging. In overdischarge status, R_{VMS} is not connected, but R_{VMD} is connected to V_{DD} and V_{M} pin voltage is pulled up to V_{DD} by R_{VMD} .

For power down mode option (ask local sales office), IC recovers normal status from overdischarge status only by charger charge to battery.

When V_M pin voltage to V_{SS} pin voltage is less than typical -0.7V, and the battery voltage rises over V_{DL} , the AP9234L will release from overdischarge status. If V_M pin voltage to V_{SS} pin voltage is higher than typical -0.7V, the AP9234L will release from overdischarge status until the battery voltage rises over V_{DL} .

For auto-wakeup version, the AP9234L recovers normal status from overdischarge status requires that either of two conditions should be satisfied. If charger is connected: The AP9234L overdischarge status is released in the same way as AP9234Ls.

If no charger is connected: 1). The battery voltage reaches the overdischarge release voltage (V_{DU}) or higher.

2). Maintains continuous time more than overdischarge release delay time t_{DLR}.

Discharge Overcurrent and Short Current Status

When battery is in discharge overcurrent status, if the voltage of the V_M pin to V_{SS} pin is equal or more than V_{DOC} to V_{SHORT} and detection lasts for the discharge overcurrent detection delay time (t_{DOC}) or longer, the AP9234L turns off the discharging MOSFET to stop discharging.

When the battery is in short current status, if the voltage of the V_M pin to V_{SS} pin is equal to or more than V_{SHORT} , and detection lasts for the short current detection delay time (t_{SHORT}) or longer, the AP9234L turns off the discharge MOSFET to stop discharging.

In discharge overcurrent or short current status, R_{VMS} is connected to V_{SS} but R_{VMD} is not connected, the voltage of V_M pin is almost equal to V_{DD} as long as the load is connected. When the load is disconnected, the voltage of V_M pin will become almost equal to V_{SS} (due to R_{VMS} being connected) and then the AP9234L will release from discharge overcurrent or short current status.

Charge Overcurrent Status

When the battery is in charge overcurrent status, if the voltage of the V_M pin to V_{SS} pin is equal to or less than V_{COC} for the charge overcurrent detection delay time (t_{COC}) or longer, the AP9234L turns off the charging MOSFET to stop charging.

0V Battery Charging Function

This function is available as an option and can be factory set internally. AP9234L has this function built in.

0V charging function permits charger to recharge the battery whose voltage is 0V due to self-discharge. If 0V charging function is not present, the device will prevent charger to recharge the battery whose voltage is 0V due to self-discharge.

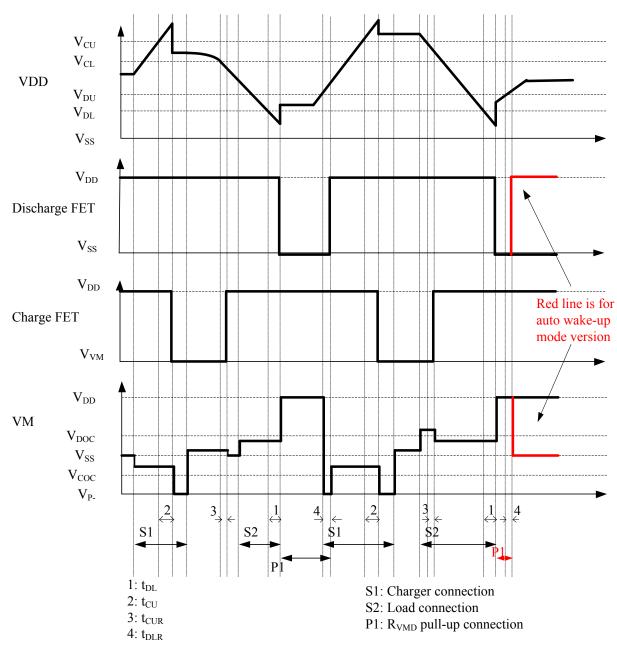
If a device without 0V charging function is needed, please contact Diodes Incorporated sales team.

Application Information (continued)

Overvoltage Charger Detection Circuit

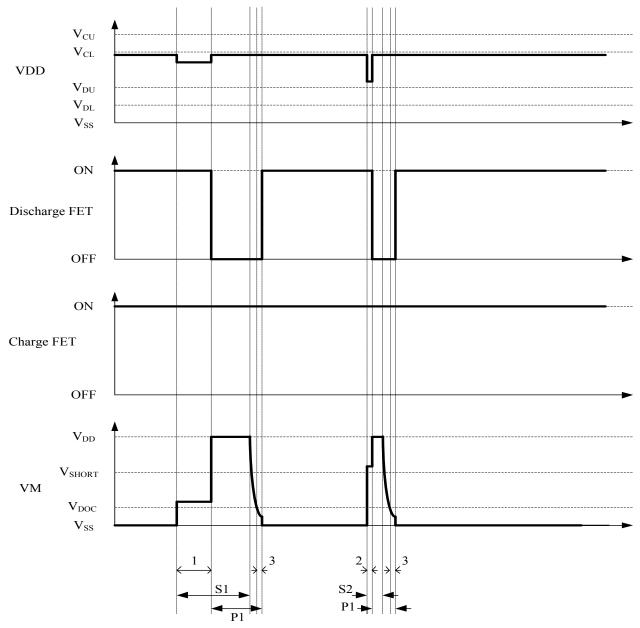
This function is used to monitor the charger voltage between the V_{DD} pin and V_{M} pin, and when this voltage exceeds overvoltage charger detection voltage (8.0V Typ.), the AP9234L will turn off charging MOSFET. When this voltage drops below overvoltage charger release voltage (7.3V Typ.), it then turns on charging MOSFET. There are no delay times set for detection and release.

Power Down Mode or Auto-Wakeup Function Option


In device with power down function, during power down mode, AP9234L enters overdischarge status. The IC enters sleep mode, and the current consumption becomes very low, typically 0.1µA. To release from power down status to the normal status, charger connection is required.

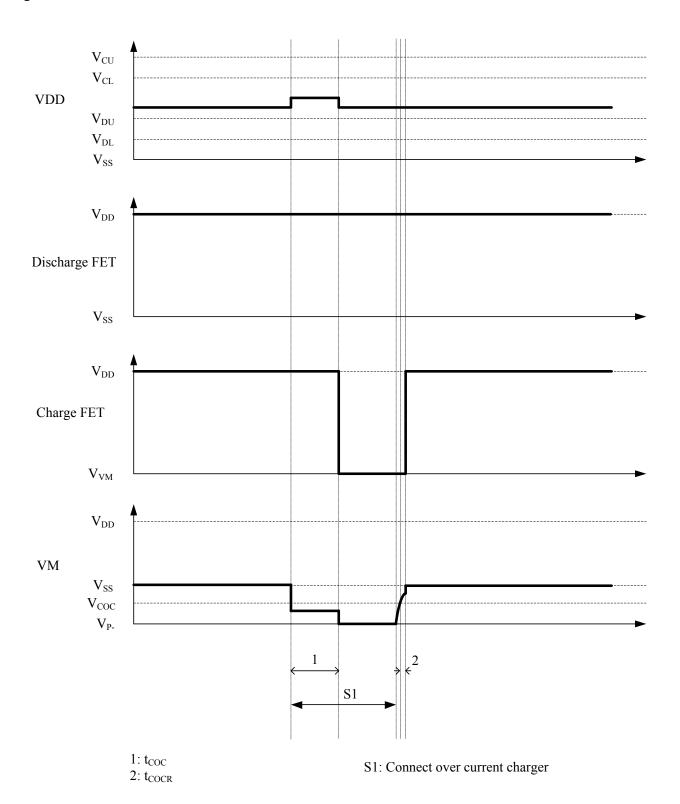
In device with auto-wakeup mode, the IC remains active in the overdischarge state. The IC is released into the normal state by the operation that increases the battery voltage more than overdischarge release voltage.

Application Information (Timing Chart)

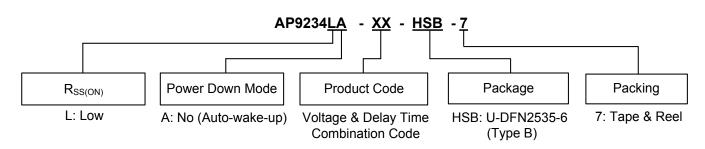

Overcharge and Overdischarge Detection

Application Information (Timing Chart) (cont.)

Discharge Overcurrent Detection


- 1: t_{DOC}
- 2: t_{SHORT}
- $3: t_{DOCR}$

- S1: Connect over current load
- S2: Connect short current load
- P1: R_{VMS} pull-down connection


Application Information (Timing Chart) (cont.)

Charge Overcurrent Detection

Ordering Information (Note 10)

Part Number Package Code		Packaging	7" Tape and Reel Quantity
AP9234LA-AA-HSB-7	HSB	U-DFN2535-6 (Type B)	3000/Tape & Reel
AP9234LA-AB-HSB-7	HSB	U-DFN2535-6 (Type B)	3000/Tape & Reel
AP9234LA-AO-HSB-7	HSB	U-DFN2535-6 (Type B)	3000/Tape & Reel

Voltage Combination

Part Number	Overcharge Detection Voltage Vcu	Overcharge Release Voltage VCL	Over- discharge Detection Voltage V _{DL}	Over- discharge Release Voltage V _{DU}	Discharge Overcurrent Detection Voltage V _{DOC}	Load Short Detection Voltage V _{SHORT}	Charge Overcurrent Detection Voltage V _{COC}	Over- voltage Charge Detection Voltage VovchG	Over- voltage Charge Release Voltage Vovchgr	Auto- wake-up Function	Overcharge Protection Mode	0V Battery Charge Function
AP9234LA- AA-HSB-7	3.800V	3.500V	2.700V	2.800V	0.105V	0.180V	-0.050V	8.0V	7.3V	Yes	Auto Release	Permission
AP9234LA- AB-HSB-7	4.200V	4.000V	2.600V	2.900V	0.090V	0.200V	-0.090V	8.0V	7.3V	Yes	Auto Release	Permission
AP9234LA- AO-HSB-7	4.425V	4.225V	2.500V	2.900V	0.064V	0.228V	-0.073V	8.0V	7.3V	Yes	Auto Release	Permission

AP9234L Delay Time Combination

Part Number	Overcharge Detection Delay Time t _{CU}	_	Overdischarge Detection Delay Time t _{DL}	Overdischarge Release Delay Time t _{DLR}	Discharge Overcurrent Detection Delay Time	Discharge Overcurrent Release Delay Time t _{DOCR}	Charge Overcurrent Detection Delay Time tcoc	Charge Overcurrent Release Delay Time tcock	Load Short Detection Delay Time tshort
AP9234LA- XX-HSB-7	1.0s	2.0ms	115ms	2.0ms	10.0ms	2.0ms	10.0ms	2.0ms	360µs

Note: 10. If any other voltage versions or delay time option products are needed, please contact with the local sale's office.

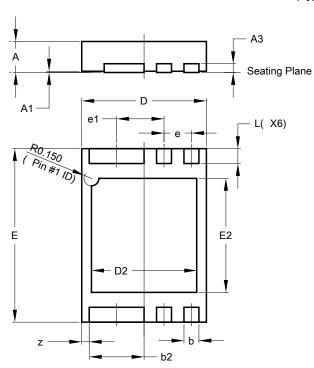
Marking Information

(Top View)

• XXXX <u>Y W X</u>

 $\frac{XXXX}{Y}: Identification \ Code$ $\frac{Y}{W}: Year: 0 \ to \ 9$ $\underline{W}: Week: A \ to \ Z: 1 \ to \ 26 \ week;$ a to z: 27 to 52 week; z represents

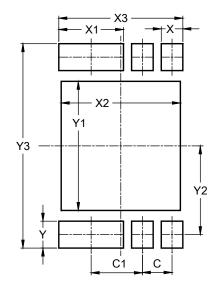
52 and 53 week \underline{X} : A to Z: Internal code


Part Number	Package	Identification Code
AP9234LA-AA-HSB-7	U-DFN2535-6 (Type B)	34AA
AP9234LA-AB-HSB-7	U-DFN2535-6 (Type B)	34AB
AP9234LA-AO-HSB-7	U-DFN2535-6 (Type B)	34AO

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-DFN2535-6(Type B)



U-DFN2535-6 (Type B)							
Dim							
Α	0.50	0.60	-				
A1	0.00	0.05	0.02				
A3	-	-	0.127				
b	0.25	0.35	0.30				
b2	1.05	1.15	1.10				
ם	2.45	2.55	2.50				
D2	2.01	2.21	2.11				
Е	3.45	3.55	3.50				
E2	2.20	2.40	2.30				
е	-	-	0.55				
e1	-	-	0.95				
L	0.25	0.35	0.30				
Z	-	-	0.15				
All Dimensions in mm							

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-DFN2535-6 (Type B)

Dimensions	Value
Dillielisions	(in mm)
С	0.550
C1	0.950
X	0.400
X1	1.200
X2	2.210
Х3	2.300
Υ	0.500
Y1	2.400
Y2	1.650
Y3	3.800