

APT100F50J

500V, 103A, 0.036 Ω Max, trr ≤390ns

N-Channel FREDFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. A proprietary planar stripe design yields excellent reliability and manufacturability. Low switching loss is achieved with low input capacitance and ultra low C_{rss} "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control slew rates during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency. Reliability in flyback, boost, forward, and other circuits is enhanced by the high avalanche energy capability.

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low C_{rss} for improved noise immunity
- Low gate charge
- Avalanche energy_rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute	Maximum	Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	103	
D 'D	Continuous Drain Current @ T _C = 100°C	65	А
I _{DM}	Pulsed Drain Current [®]	490	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy [©]	3350	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	75	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$			960	W	
R _{θJC}	Junction to Case Thermal Resistance			0.13	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15		C/vv	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		oz	
			29.2		g	
Torque				10	in∙lbf	
	Terminals and Mounting Screws.			1.1	N∙m	

Static Characteristics

T_J = 25°C unless otherwise specified

APT100F50J

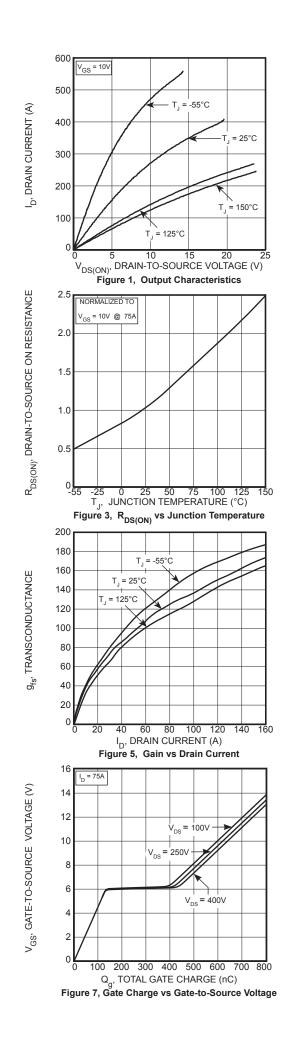
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250µA		500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 75A			.28	0.036	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 5mA$		2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 500V	T _J = 25°C			250	μA
DSS		$V_{GS} = 0V$	T _J = 125°C			1000	μΛ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 75A		115		S
C _{iss}	Input Capacitance			24600		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		330		
C _{oss}	Output Capacitance			2645		
C _{o(cr)} ⊕	Effective Output Capacitance, Charge Related			1535		pF
C _{o(er)} (5	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		775		
Q _g	Total Gate Charge	N/ 01/ 10// 1 75A		620		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 75A,$		140		nC
Q _{gd}	Gate-Drain Charge	V _{DS} = 250V		280		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		105		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 75A		125		
t _{d(off)}	Turn-Off Delay Time	R _G = 2.2Ω [®] , V _{GG} = 15V		280		ns
t _r	Current Fall Time			90		1

Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n			103	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	6	490		
V _{SD}	Diode Forward Voltage	$I_{SD} = 75A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.2	V
t _{rr}	Reverse Recovery Time	$T_{J} = 25^{\circ}C$		340	390	ns
'n	Reverse Recovery fille	T _J = 125°C		603	720	115
Q _{rr}	Poverse Reservery Charge	$I_{SD} = 75A^{(3)}$ $T_J = 25^{\circ}C$		2.74		
~rr	Reverse Recovery Charge	$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		7.29		- µC
1	I _{rrm} Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$		15.2		А
'rrm		T _J = 125°C		23.4		A
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 75A, di/dt ≤1000A/µs, V _{DD} = 333V, T _J = 125°C			20	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

(2) Starting at $T_1 = 25^{\circ}$ C, L = 1.19mH, $R_G = 25\Omega$, $I_{AS} = 75$ A.

- (3) Pulse test: Pulse Width < 380 μ s, duty cycle < 2%.
- ④ C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 ⑤ C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -5.71E-7/V_{DS}² + 1.33E-7/V_{DS} + 3.80E-10.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

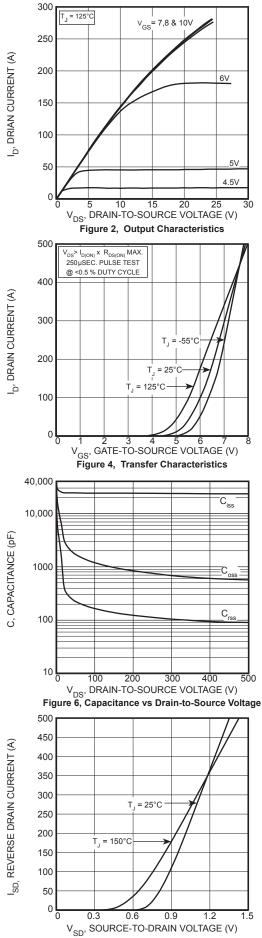


Figure 8, Reverse Drain Current vs Source-to-Drain Voltage