

1200V, 18A, 0.58Ω Max, t_{rr} ≤330ns

N-Channel FREDFET

POWER MOS 8° is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	18	
'D	Continuous Drain Current @ T _C = 100°C	12	А
I _{DM}	Pulsed Drain Current ^①	104	
V _{GS}	Gate-Source Voltage	±30	٧
E _{AS}	Single Pulse Avalanche Energy ©	2165	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	14	А

Thermal and Mechanical Characteristics

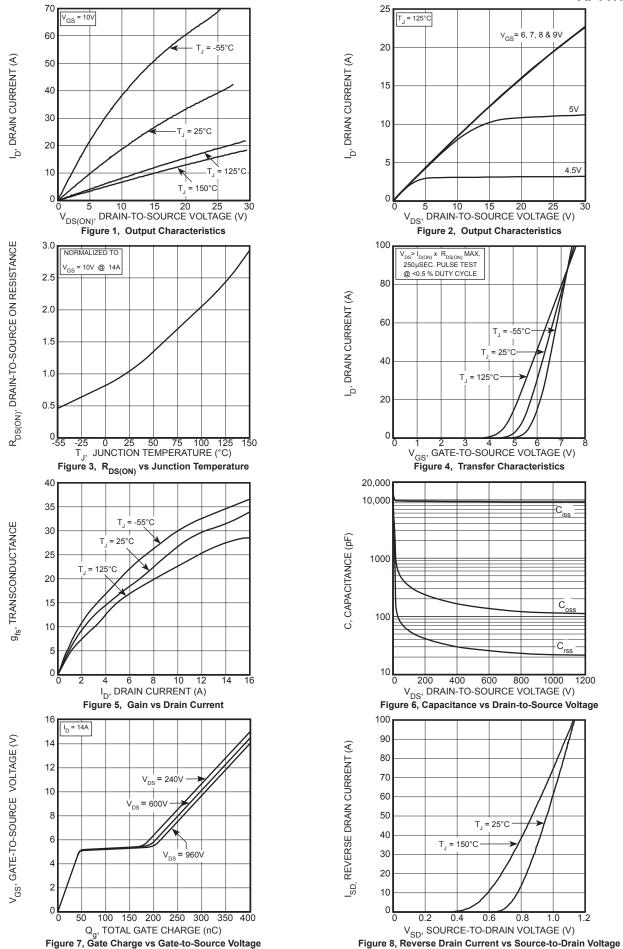
Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			545	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.23	0.23 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.		·	10	in∙lbf	
				1.1	N·m	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	1200			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250\mu A$		1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	V _{GS} = 10V, I _D = 14A		0.55	0.58	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	\\ -\\ -25m\	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1200V T _J = 25°C			250	μA
		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000] μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

T₁ = 25°C unless otherwise specified

bynamic characteristics 13 – 25 C unless otherwise specified							
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 14A		31		S	
C _{iss}	Input Capacitance	V 0V V 0FV		9670			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		115			
C _{oss}	Output Capacitance			715			
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V - 0V V - 0V45 900V		275		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 800V		140			
Q_g	Total Gate Charge	V = 0 to 10 V = 110		300			
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 14A,$ $V_{DS} = 600V$		50		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 800V		140			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		50			
t _r	Current Rise Time	V _{DD} = 800V, I _D = 14A		31		ne	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		170		ns	
t _f	Current Fall Time			48			


Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n			18	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)	s		104	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 14A, T_{J} = 25^{\circ}C, V_{GS} = 0$	0V		1.2	V
t _{rr}	Reverse Recovery Time	T _J = 25°C	:		330	no
rr		$T_J = 12$	С		660	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 14A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$;	1.72		
G _{rr}		$di_{SD}/dt = 100A/\mu s$ $T_{J} = 125^{\circ}$	С	4.67		μC
	Reverse Recovery Current	T _J = 25°C	;	11		Α
'rrm		T _J = 125°C	С	16] ^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 14A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 1$ $T_{J} = 125^{\circ}C$	00V,		25	V/ns

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 22.1mH, $R_G = 25\Omega$, $I_{AS} = 14A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.

- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

