

1000V, 23A, 0.38Ω Max, t_{rr} ≤300ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

APT22F100J
Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- · Ultra low Crss for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings						
Symbol	Parameter	Ratings	Unit			
I _D	Continuous Drain Current @ T _C = 25°C	23				
	Continuous Drain Current @ T _C = 100°C	15	Α			
I _{DM}	Pulsed Drain Current ^①	140				
V _{GS}	Gate-Source Voltage	±30	V			
E _{AS}	Single Pulse Avalanche Energy ©	2165	mJ			
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	18	А			

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			545	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.23	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.			10	in∙lbf	
				1.1	N·m	

Static Characteristics

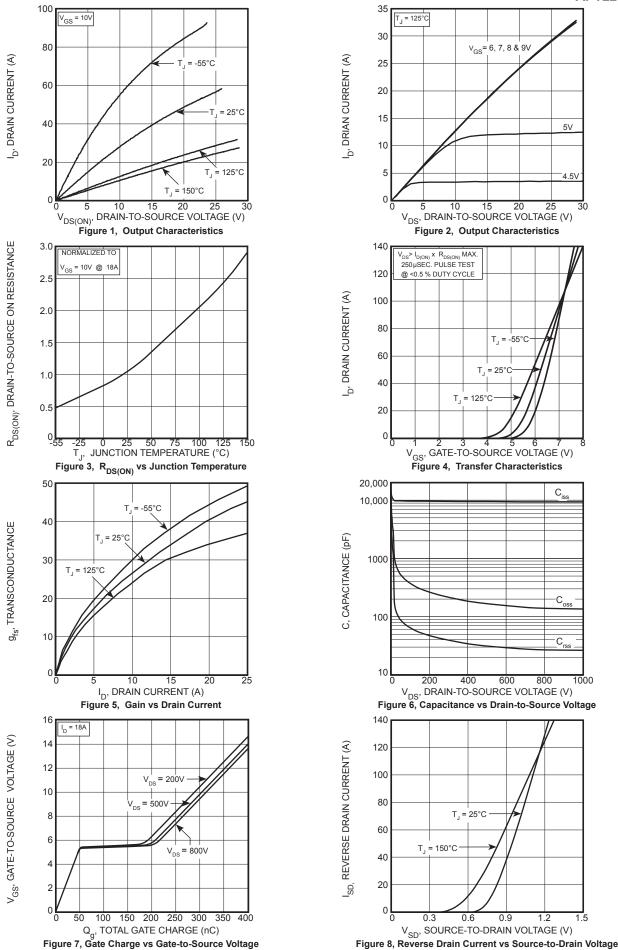
T_J = 25°C unless otherwise specified

AF	T22	F1	0	٥.	J
----	------------	----	---	----	---

Symbol	Parameter	Test Conditi	ons Mir	1 Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		0		V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I	= 250µA	1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 10V, I _D = 18A		0.32	0.38	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 2.5 \text{mA}$		4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient			-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 1000V$ $T_{J} =$	25°C		250	μA
	Zelo Gale Vollage Diaili Cullelli	$V_{GS} = 0V$ $T_J = 125^{\circ}C$	125°C		1000	μΑ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$,		±100	nA

Dvnamic Characteristics

T₁ = 25°C unless otherwise specified


by framic official certains 11 - 25 of unless otherwise specified						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 18A		39		S
C _{iss}	Input Capacitance	V 0V V 0FV		9835		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		130		
C _{oss}	Output Capacitance	1 111112		825		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V 0V V 0V 00TV		335		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 667V		170		
Q _g	Total Gate Charge	\\ -0 to 40\\ 1 - 40A		305		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 18A,$ $V_{DS} = 500V$		55		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 500V		145		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		44		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 18A		40		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		150		ns
t _f	Current Fall Time			38		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	showing the	D		23	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	s		140	A
V _{SD}	Diode Forward Voltage	I _{SD} = 18A, T _J = 25°C, V _{GS} = 0V			1.2	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			300	ns
-Trr		T _J = 125°C			650	113
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 18A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.61		μC
		$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		4.21		μΟ
	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		11.6 15.8		A
'rrm		T _J = 125°C				
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 18A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$, $T_{J} = 125^{\circ}C$			25	V/ns

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 13.36mH, $R_G = 25\Omega$, $I_{AS} = 18A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -2.85E-7/V_{DS}^2 + 5.04E-8/V_{DS} + 9.75E-11.
- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

