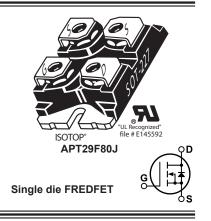


APT29F80J


800V, 29A, 0.21Ω Max, t_{rr} ≤370ns

N-Channel FREDFET

POWER MOS 8[®] is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr}, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low C_{rss} for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	31	
'D	Continuous Drain Current @ T _c = 100°C	19	A
I _{DM}	Pulsed Drain Current ¹	173	
V _{GS}	Gate-Source Voltage	±30	v
EAS	Single Pulse Avalanche Energy ²	1979	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	24	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit
P _D	Total Power Dissipation @ T _C = 25°C			543	w
$R_{_{ ext{ heta}JC}}$	Junction to Case Thermal Resistance			0.23	°C/W
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface				
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			v
W _T	Deskows Weisht		1.03		oz
	Package Weight		29.2		g
Torque				10	in∙lbf
	Terminals and Mounting Screws.			1.1	N∙m

Static Characteristics

T_J = 25°C unless otherwise specified

APT29F80J

		e annoe e enterniee epe		,,,,		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250µA	800			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA		1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance ³	V _{GS} = 10V, I _D = 24A		0.19	0.21	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V - V I - 25mA	2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_{D} = 2.5 \text{mA}$		-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 800V T _J = 25°C			250	μA
DSS		$V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions Min		Тур	Max	Unit	
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 24A		43		S	
C _{iss}	Input Capacitance			9326			
C _{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		159]	
C _{oss}	Output Capacitance	1 - 111112		927			
C _{o(cr)} ⁴	Effective Output Capacitance, Charge Related			438		pF	
C _{o(er)} ⁵	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 533V$		217			
Q _g	Total Gate Charge			303			
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 24A,$		51		nC	
Q _{gd}	Gate-Drain Charge	$V_{DS} = 400V$		155			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		53			
t _r	Current Rise Time	$V_{DD} = 533V, I_{D} = 24A$		76			
t _{d(off)}	Turn-Off Delay Time	$R_{G}^{}$ = 2.20 ⁶ , $V_{GG}^{}$ = 15V		231		ns	
t _f	Current Fall Time			67		1	

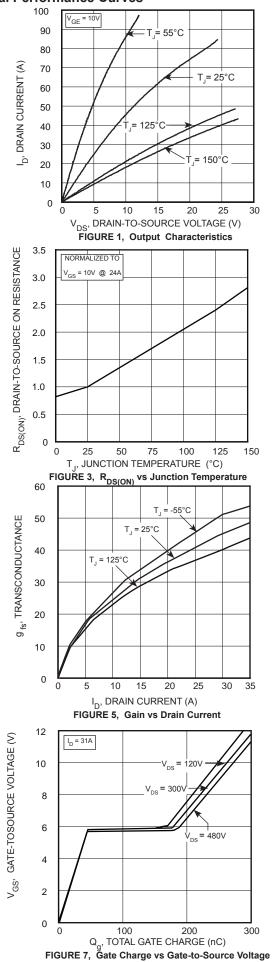
Source-Drain Diode Characteristics

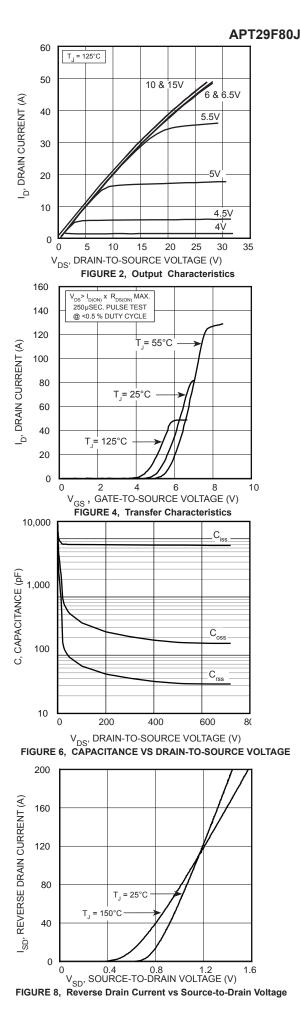
Symbol	Parameter	Test Conditions		Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the				31	Α
I _{SM}	Pulsed Source Current (Body Diode)	integral reverse p-n junction diode (body diode)	Ģ III S			173	
V _{SD}	Diode Forward Voltage	$I_{SD} = 24A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.2	V
t _{rr}	Reverse Recovery Time	l _{SD} = 24A ³ di _{SD} /dt = 100A/µs	T _J = 25°C			370	
۲r			T _J = 125°C			710	ns
Q _{rr}	Reverse Recovery Charge		T _J = 25°C		1.91		
۳r			T _J = 125°C		5.18		μC
I _{rrm}	Reverse Recovery Current		T _J = 25°C		12		•
		T _J = 125°C			18		A
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 24A, di/dt ≤1000A/μs, V _{DD} = 100V, T _J = 125°C				25	V/ns

① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

(2) Starting at $T_J = 25^{\circ}C$, L = 6.9mH, $R_G = 25\Omega$, $I_{AS} = 24A$.

(3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.


(4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$.


(b) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)} = -8.27E-7/V_{DS}^2 + 1.01E-7/V_{DS} + 1.43E-10$.

6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Typical Performance Curves

