

500V, 38A, 0.10Ω Max, t_{rr} ≤280ns

N-Channel FREDFET

Power MOS 8 $^{\text{Im}}$ is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{FT} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{FSS}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

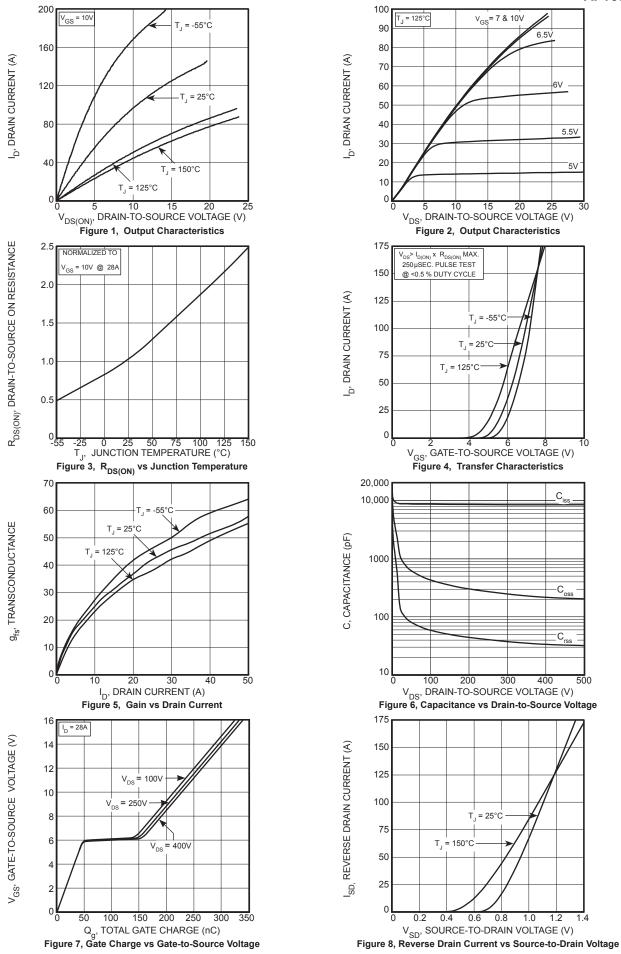
Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	38	
'D	Continuous Drain Current @ T _C = 100°C	24	А
I _{DM}	Pulsed Drain Current ^①	175	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	1200	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	28	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			355	W	
R _{øJC}	Junction to Case Thermal Resistance		0.35		°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15		- C/VV	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range -55			150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Total de la IMaga Cara Cara			10	in·lbf	
	Terminals and Mounting Screws.			1.1	N·m	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250μA		0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 28A		0.085	0.10	Ω
$V_{GS(th)}$	Gate-Source Threshold Voltage	\/ -\/ -25m\	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_{D} = 2.5 \text{mA}$		-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_{J} = 25^{\circ}C$			250	
DSS		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics


$T_{.l} = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Test Conditions Min		Тур	Max	Unit	
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 28A		42		S	
C _{iss}	Input Capacitance	V 0V V 05V		8800			
C_{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		120			
C _{oss}	Output Capacitance	7 11112		945			
$C_{o(cr)}$ $\textcircled{4}$	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 222V		550		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		275			
Q_g	Total Gate Charge)/ 01×40)/ 1 00A		220			
Q_gs	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 28A,$		50		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		100			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		38			
t _r	Current Rise Time	V _{DD} = 333V, I _D = 28A		45		ne	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		100		ns	
t _f	Current Fall Time			33			

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n				38	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)				175	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 28A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.2	V
t _{rr}	Reverse Recovery Time	Т	= 25°C			280	ns
, LL			_J = 125°C			520	115
Q _{rr}	Reverse Recovery Charge	I _{SD} = 28A ^③ T	J = 25°C		1.20		μC
		di _{SD} /dt = 100A/μs T	_J = 125°C		3.07		μΟ
1	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	J = 25°C		10.1		Α
'rrm			_J = 125°C	·	14.5		_ ^
dv/dt	Peak Recovery dv/dt	I_{SD} ≤ 28A, di/dt ≤1000A/µs, V_{DD} = 333V, T_{J} = 125°C				20	V/ns

- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T $_{\rm J}$ = 25°C, L = 3.06mH, R $_{\rm G}$ = 25 Ω , I $_{\rm AS}$ = 28A.
- ③ Pulse test: Pulse Width < 380μs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -2.04E-7/ V_{DS} ^2 + 4.76E-8/ V_{DS} + 1.36E-10.
- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

