

APT39F60J

600V, 42A, 0.11Ω Max t_{rr} ≤290ns

N-Channel FREDFET

Power MOS 8TM is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Sortop* VULRecognized* ISOTOP* VULRecognized* Tile # E145592 APT39F60J Single die FREDFET

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low C_{rss} for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I	Continuous Drain Current @ T _C = 25°C	42	
'D	Continuous Drain Current @ T _C = 100°C	26	A
I _{DM}	Pulsed Drain Current $^{\textcircled{0}}$	210	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy $^{\oslash}$	1580	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	28	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Мах	Unit
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$			480	W
R _{θJC}	Junction to Case Thermal Resistance		0.26		°C/W
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15		0/11
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V
W _T	Package Weight		1.03		oz
			29.2		g
Torque	Transische and Maustine Oracus			10	in∙lbf
	Terminals and Mounting Screws.			1.1	N∙m

Static Characteristics

$T_1 = 25^{\circ}C$ unless otherwise specified

APT39F60J

	ij 10 c dinece ethernet						
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$		600			V
$\Delta V_{BR(DSS)} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250 \mu A$			0.57		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V	, I _D = 28A		0.09	0.11	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$\gamma = \gamma$	L = 2.5m/	2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_J$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$			-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 600V	T _J = 25°C			250	
DSS		V _{GS} = 0V	T _J = 125°C			1000	μA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$				±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified

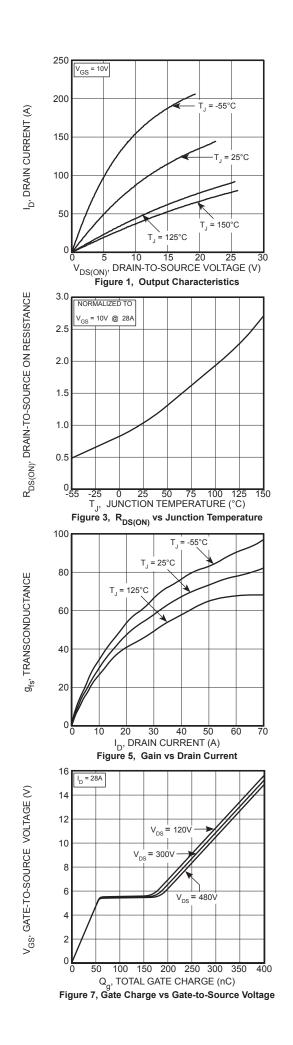
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 28A$		55		S
C _{iss}	Input Capacitance			11300		
C _{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		115		
C _{oss}	Output Capacitance	1 111112		1040		
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	$y_{1} = 0y_{1}y_{2} = 0y_{1} = 0y_{2}$		550		pF
C _{o(er)} (5)	Effective Output Capacitance, Energy Related	V_{GS} = 0V, V_{DS} = 0V to 400V		285		
Q _g	Total Gate Charge	$y_{1} = 0 \pm 40 y_{1} + -000$		280		nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 28A,$ $V_{DS} = 300V$		60		
Q _{gd}	Gate-Drain Charge	v _{DS} - 300V		120		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		65		
t _r	Current Rise Time	V _{DD} = 400V, I _D = 28A		75		ne
t _{d(off)}	Turn-Off Delay Time	R _G = 2.2Ω [®] , V _{GG} = 15V		190		ns
t _f	Current Fall Time			60		

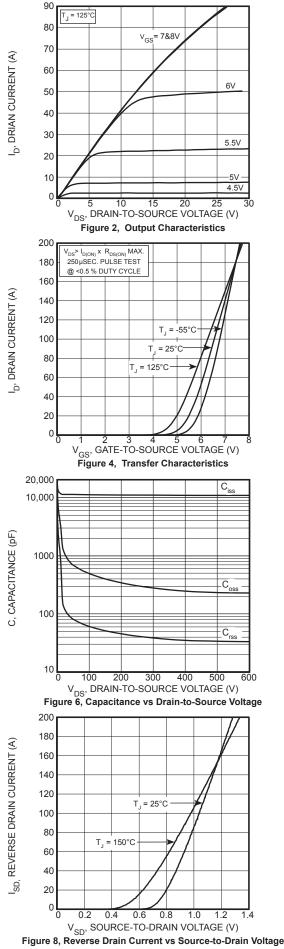
Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
۱ _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			42	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)			210	~
V _{SD}	Diode Forward Voltage	$I_{SD} = 28A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.2	V
t		$T_{J} = 25^{\circ}C$		255	290	20
۲r	t _{rr} Reverse Recovery Time	T _J = 125°C		450	540	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 28A^{(3)}$ $T_J = 25^{\circ}C$		1.41		
∝ rr		$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		3.66	μ μ	μC
1	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$		10.7		٨
rrm		T _J = 125°C		15.8		A
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 28A, di/dt ≤1000A/µs, V _{DD} = 400V, T _J = 125°C			20	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.

(2) Starting at $T_J = 25^{\circ}$ C, L = 4.03mH, $R_G = 25\Omega$, $I_{AS} = 28$ A.


(3) Pulse test: Pulse Width < 380μ s, duty cycle < 2%.


(4) C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
(5) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -1.10E-7/V_{DS}² + 4.60E-8/V_{DS} + 1.72E-10.

6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

050-8155 Rev D 8-2011