

500V, 51A, 0.075Ω Max, t_{rr} ≤310ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

S S

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	51	
'D	Continuous Drain Current @ T _C = 100°C	32	А
I _{DM}	Pulsed Drain Current ^①	230	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	1580	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	37	А

Thermal and Mechanical Characteristics

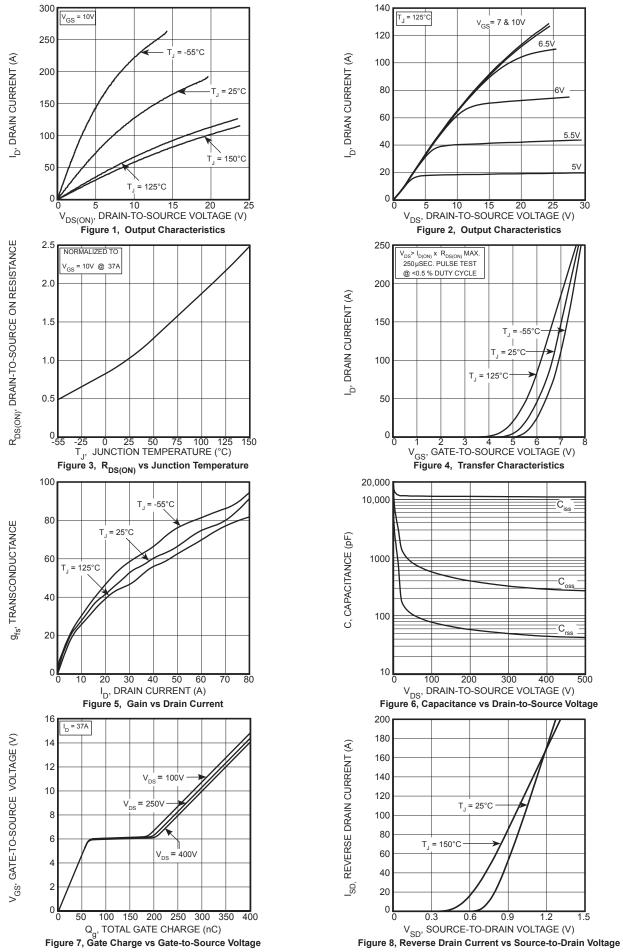
Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			480	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.26	0.26 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.		·	10	in·lbf	
				1.1	N·m	

Symbol	Parameter	Test Conditio	ns Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250$	0μA 500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =	= 250µA	0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	$V_{GS} = 10V, I_{D} = 3$	37A	0.064	0.075	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V -V I -2	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.$	SITIA	-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_{J} = 2$	25°C		250	μA
DSS		$V_{GS} = 0V$ $T_J = 1$	25°C		1000	μΑ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$			±100	nA

Dvnamic Characteristics

T₁ = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 37A		55		S
C _{iss}	Input Capacitance)/ 0)/)/ 05\/		11600		
C_{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		160		
C _{oss}	Output Capacitance	1 111112		1250		
$C_{o(cr)} @$	Effective Output Capacitance, Charge Related	V = 0V V = 0V+c 222V		725		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 333V		365		
Q _g	Total Gate Charge)/ 01×40)/ 1 07A		290		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 37A,$		65		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		130		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		45		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 37A		55		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		120		ns
t _f	Current Fall Time]		39		1


Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the	OD I		51	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	s		230	
V _{SD}	Diode Forward Voltage	$I_{SD} = 37A, T_{J} = 25^{\circ}C, V_{GS} = 0$	/		1.2	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			310	no
rr		T _J = 125°C			570	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 37A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.48		
rr		$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		3.85		μC
ı	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		11.3		_
'rrm		T _J = 125°C		16.6		Α Α
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 37A$, di/dt $\le 1000A/\mu$ s, $V_{DD} = 33$ $T_J = 125$ °C	3V,		20	V/ns

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T_J = 25°C, L = 2.31mH, R_G = 25 Ω , I_{AS} = 37A.
- ③ Pulse test: Pulse Width < 380μs, duty cycle < 2%.

- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

