

600V, 84A, 0.055 Ω Max, $t_{rr} \le 370$ ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit	
	Continuous Drain Current @ T _C = 25°C	84		
l D	Continuous Drain Current @ T _C = 100°C	52	А	
I _{DM}	Pulsed Drain Current [⊕]	447		
V _{GS}	Gate-Source Voltage	±30	V	
E _{AS}	Single Pulse Avalanche Energy ©	3352	mJ	
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	60	Α	

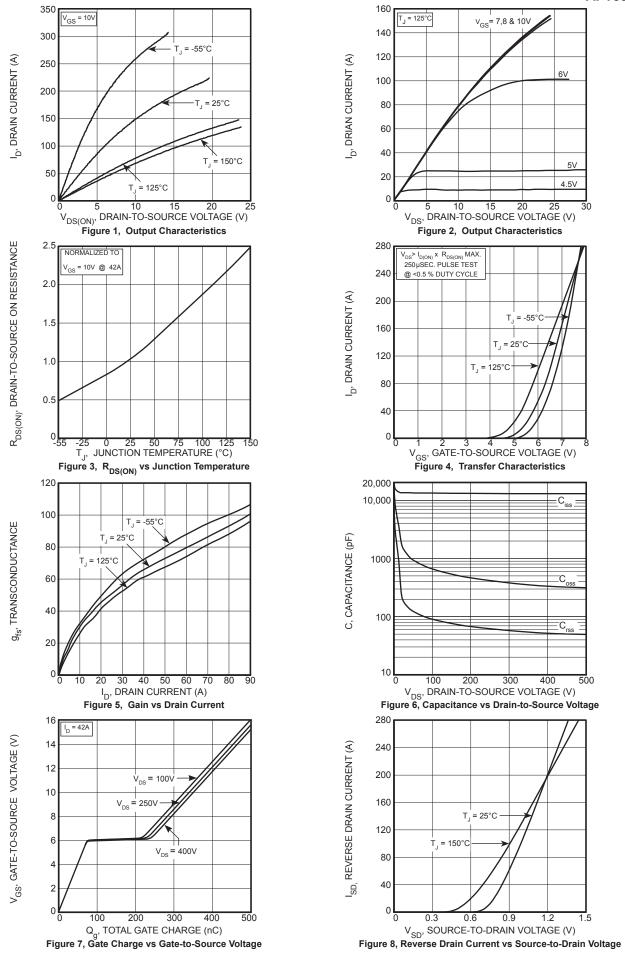
Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			961	W	
R _{θJC}	Junction to Case Thermal Resistance			0.13	0.13 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.			10	in·lbf	
				1.1	N·m	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	600			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA		0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	$V_{GS} = 10V, I_{D} = 60A$		0.042	0.055	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	\/ -\/ -2.5m/	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
l	Zero Gate Voltage Drain Current	$V_{DS} = 600V$ $T_{J} = 25^{\circ}C$			250	μA
DSS DSS	Zero Gate Voltage Brain Guirent	$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μ/\
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

T_J = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 60A		117		S
C _{iss}	Input Capacitance	V _{GS} = 0V, V _{DS} = 25V		23994		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		245		
C _{oss}	Output Capacitance			2201		pF
C _{o(cr)} 4	Effective Output Capacitance, Charge Related	V _{GS} = 0V, V _{DS} = 0V to 400V		1170		
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related			606		
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 60A,$		598		
Q _{gs}	Gate-Source Charge	V _{DS} = 300V		128		nC
Q_{gd}	Gate-Drain Charge			251		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		134		
t _r	Current Rise Time	$V_{DD} = 400V, I_{D} = 60A$		156		
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		408		ns
t _f	Current Fall Time			123		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n	OD D		84	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode O- (body diode)	s		447	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 60A, T_{J} = 25^{\circ}C, V_{GS} =$: 0V		1.2	V
t _{rr}	Reverse Recovery Time Reverse Recovery Charge	T _J = 25°	С		370	ns
,tt		T _J = 125	s°C		690	110
Q _{rr}		$I_{SD} = 60A^{\textcircled{3}}$ $T_{J} = 25^{\circ}$	С	2.6		μC
		$V_{DD} = 100V$ $T_{J} = 125$	5°C	7.0		μΟ
	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	С	14.5		Α
^I rrm			5°C	20		_ ^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 60A$, di/dt $\le 1000A/\mu s$, $V_{DD} = T_J = 125$ °C	400V,		25	V/ns

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Starting at T_J = 25°C, L = 2.08mH, R_G = 25 Ω , I_{AS} = 60A.
- 3 Pulse test: Pulse Width < 380μ s, duty cycle < 2%.
- 4 $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$.
- 5 $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -3.14E-7/ V_{DS} ^2 + 7.31E-8/ V_{DS} + 2.09E-10.
- $R_{\rm G}$ is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

6 R_G is external

