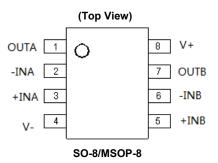
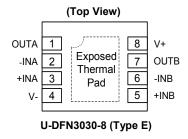


AS2333

1.8V, MICROPOWER CMOS ZERO-DRIFT OPERATIONAL AMPLIFIERS


Description


The AS2333 is dual CMOS operational amplifier designed with chopping stabilization technique. This product can provide ultra-low input offset voltage (8µV typical) and near zero-drift over time and temperature. This technique also eliminates 1/f noise and the crossover distortion present in most rail-to-rail input operational amplifiers. The high-precision, low quiescent current amplifier offers high-impedance inputs that have a common-mode range 100mV beyond the rails, and a rail-to-rail output that swings within 50mV of the rails. Single or dual supplies as low as 1.8V (± 0.9 V) and up to 5.5V (± 2.75 V) can be used.

The device is optimized for low voltage single supply application, especially for low-power high-precision applications.

The AS2333 is available in the standard 8-pin SO-8, MSOP-8, and U-DFN3030-8 (Type E) packages, and is specified for operation from -40°C to +125°C.

Pin Assignments

Features

Low Input Offset Voltage: 8μV (typ)

Zero Drift: 0.02μV/°C (typ)

0.01Hz to 10Hz Noise: 1.1µV_{PP}

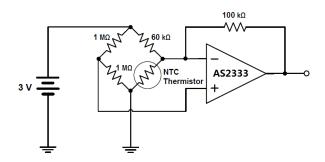
Low Quiescent Current: 12µA per Amplifier

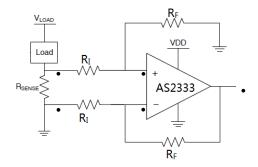
Supply Voltage: 1.8V to 5.5V

Rail-to-Rail Input and Output

- Bandwidth 350kHz
- Slew Rate 0.12V/µs (typ)
- MSOP-8, SO-8, and U-DFN3030-8 (Type E) Packages
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen- and Antimony-Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Applications


- Battery-Powered Instruments
- Handheld Test Equipment
- Medical Instrumentation
- Sensor Signal Conditioning
- Low Voltage Current Sensing


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Application

Thermistor Measurement

Low-Side Current Monitor

Pin Descriptions

Pin Number	Pin Name	I/O	Description
3	+INA	I	Noninverting input, channel A
5	+INB	I	Noninverting input, channel B
2	-INA	I	Inverting input, channel A
6	-INB	I	Inverting input, channel B
1	OUTA	0	Output, channel A
7	OUTB	0	Output, channel B
8	V+	_	Positive Power Supply Recommend to place a minimum 0.1µF decoupling capacitor between V+ pin and GND as close as possible.
4	V-	_	Negative Power Supply Single power supply application, it is normally tied to ground. Split power supply application, a minimum 0.1µF decouple capacitor is recommended to be placed between V- pin and GND as close as possible.

Absolute Maximum Ratings (Note 4) (@ T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	g	Unit
V _S = V+ - V-	Supply Voltage Range	6.5		V
V _{-IN} / V _{+IN}	Signal Input Terminals (Note 5)	V 0.3V to V	+ + 0.3V	V
	Signal Input Terminals (Note 5)	-1 to +	1	mA
_	Output Short-Circuit (Note 6)	Continuo	ous	mA
T _{STG}	Storage Temperature	-65 to +	150	°C
TJ	Maximum Junction Temperature	+150	+150	
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds)	+260		°C
		SO-8	139	°C/W
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance	MSOP-8	184	°C/W
		U-DFN3030-8 (Type E)	_	°C/W
		SO-8	25	°C/W
R _{eJC}	Junction-to-Case Thermal Resistance	MSOP-8	18	°C/W
		U-DFN3030-8 (Type E)	_	°C/W
ESD HBM	Human Body Model ESD Protection	4		kV
ESD CDM	Charged-Device Model ESD Protection	1		kV

Notes:

Recommended Operating Conditions (@ T_A = +25°C, unless otherwise specified.)

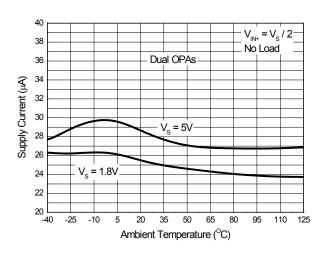
Symbol	Parameter	Rating	Unit
V _S = V+ - V-	Supply Voltage Range	1.8 to 5.5	V
T _A	Operating Ambient Temperature Range	-40 to +125	°C

^{4.} Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

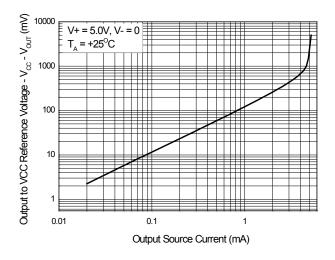
^{5.} Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current limited to 10mA or less.

^{6.} Short-circuit to ground.

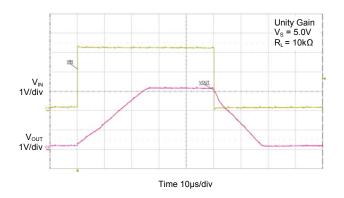
Electrical Characteristics (@ T_A = +25°C, V_S = 5.0V, R_L = 10k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2, unless otherwise specified.)

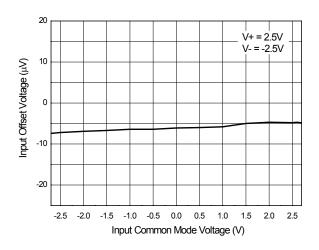

Offset Voltage V _S = 5V — 8 22 μV ΔV _{OS} /ΔT Input Offset Voltage Drift (Note 7) T _A = 40°C to +85°C — 0.02 0.1 μV°C PSRR Power-Supply Rejection Ratio V _S = 1.8V to 5.5V, T _A = 40°C to +125°C — — 0.2 μV°C — Long-Term Stability — — (Note 7) μV — Channel Separation, DC — — — 1.1 5 μV/V Input Bias Current T _A = +25°C — — ±400 — pA ±500 — ±400 — pA ±600 — ±70 ±200 — pA ±600 — ±70 ±200 — ±70 ±200 — ±70 ±200 — ±70 ±200 — ±70 ±800 — ±7	Symbol	Parameter	Cond	litions	Min	Тур	Max	Unit
AV _{OS} /AT Input Offset Voltage Drift (Note 7) T _A = -40°C to +85°C — 0.02 0.1 μ/V°C T _A = -40°C to +125°C — 0.02 μ/V°C μ/V°C T _A = -40°C to +125°C — 0.02 μ/V°C	Offset Voltage)						
AVogAT Input Offset Voltage Drift (Note 7) TA = -40°C to +125°C — — 0.2 μV/°C	Vos	Input Offset Voltage	V _S = 5V		_	8	22	μV
Ta = 40°C to +125°C		land Official Valle on Delft (Nate 7)	$T_A = -40^{\circ}C \text{ to } +85$	T _A = -40°C to +85°C		0.02	0.1	μV/°C
Fower-suppy Rejection Ratio +125°C	ΔV _{OS} /Δ1	Input Offset Voltage Drift (Note 7)	$T_A = -40^{\circ}C \text{ to } +12$	5°C	_		0.2	μV/°C
Channel Separation, DC	PSRR	Power-Supply Rejection Ratio		T _A = -40°C to	_	1	5	μV/V
Input Bias Current Input Bias Current TA = +25°C	_	Long-Term Stability	-	— (Note 7)		•	μV	
Input Bias Current	_	Channel Separation, DC	_	_	_	0.1	_	μV/V
Input Offset Current T _A = -40°C to +125°C — ±400 — ±400 — pA Ios Input Offset Current — ±1140 ±400 — ±140 ±400 Noise	Input Bias Cu	rrent						
Ta = -40°C to +125°C		Innut Diag Current	T _A = +25°C		_	±70	±200	
Noise Fe	IΒ	Input Bias Current		5°C	_	±400	_	pА
Noise Fe	I _{OS}	Input Offset Current	-	_	_	±140	±400	
Input Voltage Noise f = 0.1Hz to 10Hz	Noise	1 '			1			
	.,	Innut Valtana Naisa	f = 0.01Hz to 1Hz		_	0.3	_	.,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _N	Input Voltage Noise	f = 0.1Hz to 10Hz		_	1.1	_	μV_{PP}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _N	Input Current Noise	f = 10Hz		_	100	_	fA/√Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Voltage	1 '			1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Common-Mode Voltage Range	-	_	(V-) - 0.1	_	(V+) + 0.1	V
			` '	, ,		120	_	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacita	ance	,,		L			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_	I _	2	I _	pF
$ \begin{array}{ c c c c c c c c } \hline \textbf{Open-Loop Gain} & & & & & & & & & & & & & & & & & & &$	_		_		_		_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Open-Loop Ga							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					106	130	_	dB
$ \begin{array}{ c c c c c c c }\hline SR & Slew Rate & G = +1 & - & 0.12 & - & V/\mu s \\ \hline \textbf{Output} & & & & & & & & & & & & & & & & & & &$	Frequency Re	sponse	•		•			
$ \begin{array}{ c c c c c c c }\hline SR & Slew Rate & G = +1 & - & 0.12 & - & V/\mu s \\ \hline \textbf{Output} & & & & & & & & & & & & & & & & & & &$	GBW	Gain-Bandwidth Product	C _L = 100pF		_	350	_	kHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR	Slew Rate			_	0.12	_	V/µs
$ - \text{ Voltage Output Swing from Rail } \begin{array}{ c c c c c }\hline Positive Rail \\ R_L = 10k\Omega & T_A = -40^{\circ}C \text{ to } \\ +125^{\circ}C & - & - & - & 70 \\ \hline Negative Rail \\ R_L = 10k\Omega & T_A = +25^{\circ}C & - & 10 & 50 \\ \hline T_A = -40^{\circ}C \text{ to } \\ - & - & - & 70 \\ \hline \end{array} $ $ \begin{array}{ c c c c c }\hline MV \\ \hline MV \\ MV \\$	Output		•					-
$ - \text{ Voltage Output Swing from Rail } \begin{array}{ c c c c c }\hline Positive Rail \\ R_L = 10k\Omega & T_A = -40^{\circ}C \text{ to } \\ +125^{\circ}C & - & - & - & 70 \\ \hline Negative Rail \\ R_L = 10k\Omega & T_A = +25^{\circ}C & - & 10 & 50 \\ \hline T_A = -40^{\circ}C \text{ to } \\ - & - & - & 70 \\ \hline \end{array} $ $ \begin{array}{ c c c c c }\hline MV \\ \hline MV \\ MV \\$			Decitive Deil	T _A = +25°C	_	30	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Valle on Outrat Outra form Dail			_	_	70	>/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Voltage Output Swing from Rail	Nametica Dail	T _A = +25°C	_	10	50	mv
I _{SC} Short-Circuit Current Sink Current — 25 — mA — Open-Loop Output Impedance f = 350kHz, I _O = 0A — 2 — kΩ Power Supply V _S Specified Voltage Range — 1.8 — 5.5 V I _Q Quiescent Current per Amplifier I _O = 0A, T _A = +25°C — 12 20 μΑ I _O = 0A, T _A = -40°C to +125°C — 28 μΑ				T _A = -40°C to	_		70	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		01 10: 10	Source Current	•	_	5	_	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Isc	Short-Circuit Current	Sink Current		_	25	_	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Open-Loop Output Impedance	f = 350kHz, I _O = 0.	f = 350kHz, I _O = 0A		2	_	kΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power Supply		l				•	
I_{Q} Quiescent Current per Amplifier $ \frac{I_{O} = 0A, T_{A} = +25^{\circ}C}{I_{O} = 0A, T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C} $		1	-	_	1.8	_	5.5	V
I _Q Quiescent Current per Amplifier I _O = 0A, T _A = -40°C to +125°C — 28			I _O = 0A. T _A = +25°	C	_	12	20	
	lα	Quiescent Current per Amplifier			_	_		μA
1 100 I — I po	t _{ON}	Turn-On Time	V _S = 5V			100	_	μs

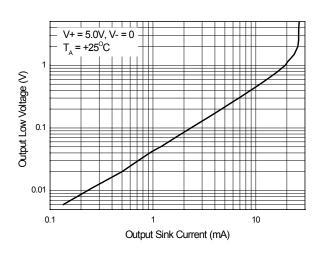
Note: 7. 300-hour life test at +150°C demonstrated randomly distributed variation of approximately 1µV. This parameter guaranteed by design and characterization, not by testing.

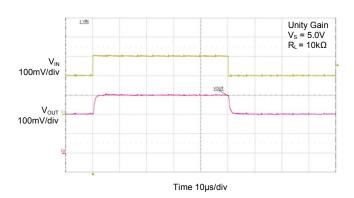


Typical Performance Characteristics

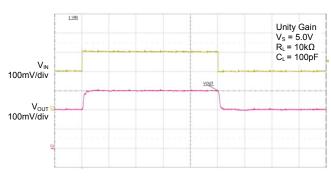

Supply Current vs. Temperature

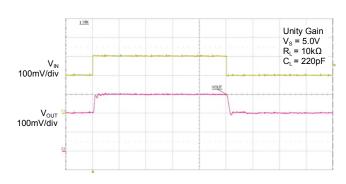

Output Characteristics-Sourcing Current


Large Signal Response

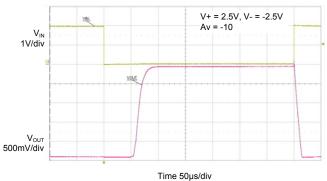

Input Offset Voltage vs. Input Common Mode Voltage

Output Characteristics-Sinking Current

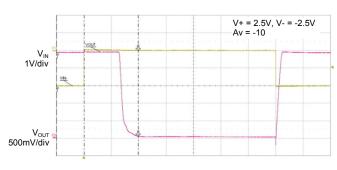

Small Signal Response


Typical Performance Characteristics (continued)

Small Signal Response

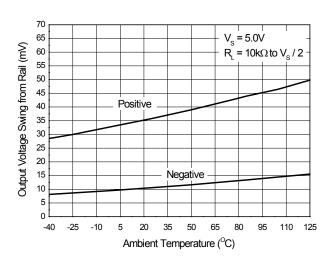

Time 10µs/div

Small Signal Response

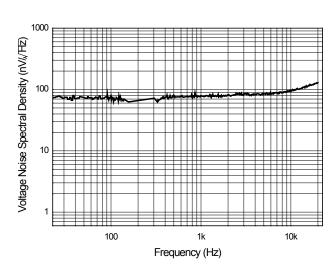


Time 10µs/div

Negative Overvoltage Response

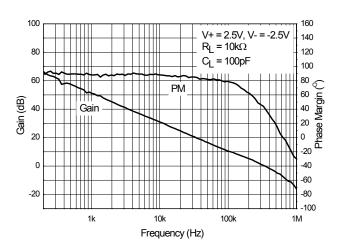


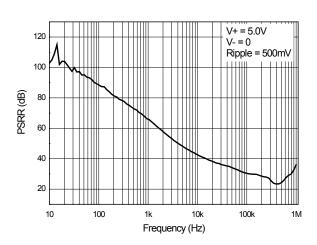
Positive Overvoltage Response



Time 50µs/div

Output Voltage Swing from Rail


Voltage Noise Spectral Density

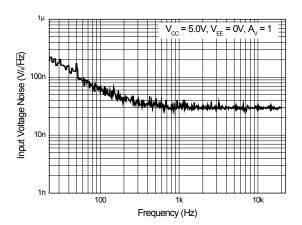


Typical Performance Characteristics (continued)

Frequency Response

Power Supply Rejection Ration vs. Frequency

Application Information


Overview

The AS2333 is low-power, zero-drift, high-precision, rail-to-rail input and output operational amplifier, which adopts chopper-stabilized function circuits to provide the advantage of minimizing input offset voltage and offset voltage drift over time and temperature. Its input common-mode voltage range extends 0.1V beyond the supply rails to allow for sensing near ground or system V_{DD}. The device operates from a single-supply voltage as low as 1.8V, is unity-gain stable, has no 1/f noise, and has good PSRR and CMRR performance. These features make the AS2333 suitable for a wide range of general-purpose applications, especially for low-power and high-precision applications.

Low Input Referred Noise

The device AS2333 is chopper-stabilized amplifier, which greatly reduces the flicker noise. The zero-drift chopper-stabilized amplifiers are especially suited for accurate, high-gain amplification at lower frequencies. In general, they do not exhibit the higher bandwidth of linear operational amplifiers, and the location of their clock frequency establishes a practical frequency limit on signal fidelity. This makes performance at low frequencies especially important, and the chopper-stabilized architecture further contributes to low-frequency usefulness by eliminating the classic linear operational amplifier 1/f input voltage noise. Many high-gain sensor applications are at low frequencies, making zero-drift amplifiers a natural choice for this function.

The below graphs compare the voltage noise density behaviors of conventional amplifiers and zero-drift amplifiers. The 1/f noise elimination in zero-drift amplifiers allow the AS2333 to have much lower noise at DC and low frequencies compared to the conventional low-noise amplifiers.

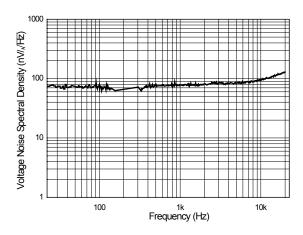


Figure 1. Input Voltage Noise in Conventional Amplifier (AZV832)

Figure 2. Input Voltage Noise in Zero-Drift Amplifier (AS2333)

Driving a Capacitive Load

The AS2333 can directly drive 200pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Capacitive loading directly on the output terminal can decrease the device's phase margin, leading to high-frequency ringing or oscillation.

To drive a heavier capacitive load, the circuit in Figure 3 can be used. The resistor R_{NULL} and C_L form a pole to increase stability by adding more phase margin to the system. The bigger the R_{NULL} resistor value, the more stable V_{OUT} is. Figure 4 and Figure 5 show the AS2333's output pulse response waveforms with and without R_{NULL} 330 Ω for load conditions C_L = 470pF and R_L = 10k Ω .

Application Information (continued)

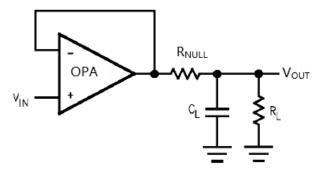


Figure 3. Capacitive Load with R_{NULL}

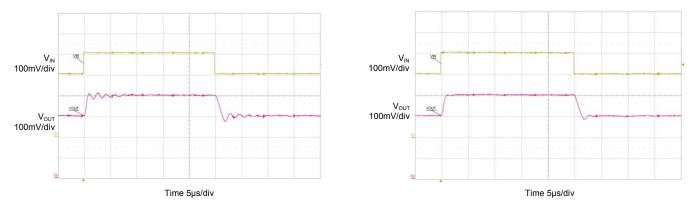


Figure 4. Test Result Without R_{NULL}

Figure 5. Test Result with R_{NULL} 330 $\!\Omega$

An RC snubber circuit can be used to reduce capacitive load ringing and overshoot, as shown in Figure 6. It allows the amplifier to drive larger values of capacitance while maintaining a minimum for overshoot and ringing. Figure 7 shows AS2333's test results for capacitive load 470pF with a snubber circuit.

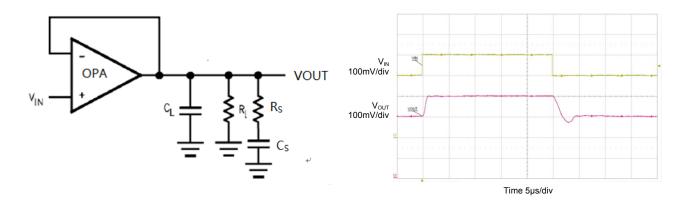


Figure 6. Circuit with Snubber Circuit

Figure 7. Test Result with Snubber Circuit

Application Information (continued)

Low-Side Current Monitor Application

Low-side current sensing is used to monitor the current through a load. This method can be used to detect over-current conditions and is often used in feedback control, as shown in Figure 8. A sense resistor is placed in series with the load to the ground. Precision resistors are required for high accuracy and the resulting voltage drop is amplified using the AS2333.

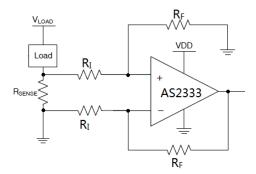


Figure 8. Low-Side Current Monitor Application

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit, as shown in Figure 9. In the measurement, the voltage change that is produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

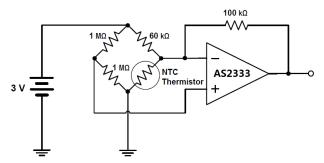
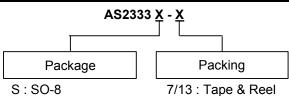



Figure 9. Bridge Circuit Amplification

Ordering Information


M8: MSOP-8 FGE: U-DFN3030-8 (Type E)

Part Number	Identification	Dockoring	Tape and Reel		
Part Number	Code	Packaging	Quantity	Part Number Suffix	
AS2333S-13	AS2333	SO-8	2500/Tape & Reel	-13	
AS2333M8-13	AS2333	MSOP-8	2500/Tape & Reel	-13	
AS2333FGE-7	ND	U-DFN3030-8 (Type E)	3000/Tape & Reel	-7	

Marking Information

(1) SO-8

⊃¦¦: Logo

AS2333: Identification Code YY: Year: 19, 20, 21~ <u>WW</u>: Week: 01~52; 52 represents 52 and 53 week

XX: Internal Code

(2) MSOP-8

(Top View)

⊃¦¦: Logo

AS2333: Identification Code

Y: Year: 0 to 9

<u>W</u>: Week: A to Z: 1 to 26 week; a to z: 27 to 52 week; z represents

52 and 53 week

X: Internal Code

(3) U-DFN3030-8 (Type E)

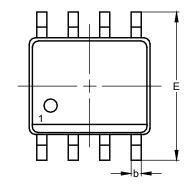
(Top View)

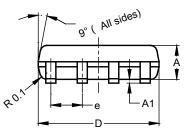
ND: Identification Code

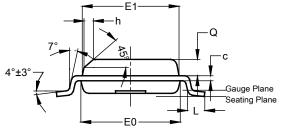
Y: Year: 0~9

W: Week: A~Z: 1~26 week;

a~z: 27~52 week; z represents

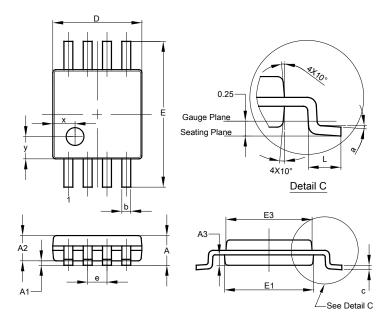

52 and 53 week X: Internal Code




Package Outline Dimensions

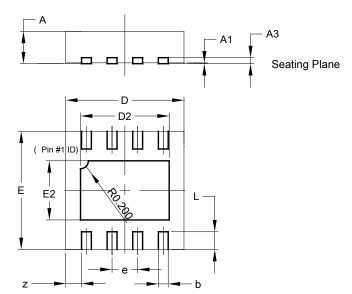
Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: SO-8



SO-8				
Dim	Min	Max	Тур	
Α	1.40	1.50	1.45	
A1	0.10	0.20	0.15	
b	0.30	0.50	0.40	
С	0.15	0.25	0.20	
D	4.85	4.95	4.90	
Е	5.90	6.10	6.00	
E1	3.80	3.90	3.85	
E0	3.85	3.95	3.90	
е		-	1.27	
h		-	0.35	
L	0.62	0.82	0.72	
Q	0.60	0.70	0.65	
All Dimensions in mm				

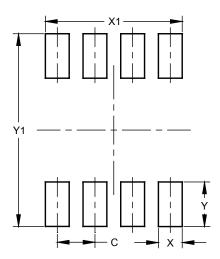
(2) Package Type: MSOP-8


	MSOP-8				
Dim	Min	Max	Тур		
Α	-	1.10	-		
A1	0.05	0.15	0.10		
A2	0.75	0.95	0.86		
A3	0.29	0.49	0.39		
b	0.22	0.38	0.30		
С	0.08	0.23	0.15		
D	2.90	3.10	3.00		
Е	4.70	5.10	4.90		
E1	2.90	3.10	3.00		
E3	2.85	3.05	2.95		
е	ı	ı	0.65		
L	0.40	0.80	0.60		
а	0°	8°	4°		
Х	-	-	0.750		
у	-	-	0.750		
All Dimensions in mm					

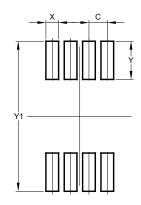
Package Outline Dimensions (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

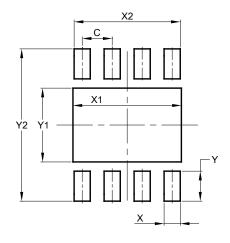
(3) Package Type: U-DFN3030-8 (Type E)


	U-DFN3030-8 (Type E)				
Dim	Min	Max	Тур		
Α	0.57	0.63	0.60		
A1	0.00	0.05	0.02		
A3	-	-	0.15		
b	0.20	0.30	0.25		
D	2.95	3.05	3.00		
D2	2.15	2.35	2.25		
Е	2.95	3.05	3.00		
E2	1.40	1.60	1.50		
е	-	-	0.65		
L	0.30	0.60	0.45		
Z	-	-	0.40		
All Dimensions in mm					

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: SO-8


Dimensions	Value (in mm)
C	1.27
Х	0.802
X1	4.612
Y	1.505
Y1	6.50

(2) Package Type: MSOP-8

Dimensions	Value (in mm)	
С	0.650	
Х	0.450	
Υ	1.350	
Y1	5 300	

(3) Package Type: U-DFN3030-8 (Type E)

Dimensions	Value (in mm)
С	0.650
X	0.350
X1	2.350
X2	2.300
Υ	0.650
Y1	1.600
Y2	3.300

Mechanical Data

SO-8

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.075 grams (Approximate)

MSOP-8

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.025 grams (Approximate)

U-DFN3030-8 (Type E)

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish NiPdAu over Copper Lead-Frame Solderable per MIL-STD-202, Method 208
- Weight: 0.017 grams (Approximate)