AS8C403601, AS8C401801,128K x 36, 256K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature,3.3V I/O, burst counter, and Pipelined Outputs Commercial Temperature Ranges

128K x 36, 256K x 18 3.3V Synchronous ZBT SRAMs 3.3V I/O, Burst Counter Pipelined Outputs

AS8C403601-QC166N AS8C401801-QC166N

Features

- 128K x 36, 256K x 18 memory configurations
- Supports high performance system speed 166 MHz (x18) (3.2 ns Clock-to-Data Access)
- Supports high performance system speed 166 MHz (x36) (3.5 ns Clock-to-Data Access)
- ZBT[™] Feature No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control OE
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write (BW1 BW4) control (May tie active)
- Three chip enables for simple depth expansion
- 3.3V power supply (±5%), 3.3V I/O Supply (VDDQ)
- Optional- Boundary Scan JTAG Interface (IEEE 1149.1 compliant)
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP)

Description

The 403601/401801 are 3.3V high-speed 4,718,592-bit (4.5 Megabit) synchronous SRAMS. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name ZBTTM, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.

The 403601/401801 contain data I/O, address and control signal registers. Output enable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable (\overline{CEN}) pin allows operation of the 403601/401801 to be suspended as long as necessary. All synchronous inputs are ignored when (\overline{CEN}) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{CE}1$, CE2, $\overline{CE}2$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/ \overline{LD} is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The data bus will tri-state two cycles after chip is deselected or a write is initiated.

-	,				
A0-A17	Address Inputs	Input	Synchronous		
\overline{CE}_{1} , CE ₂ , \overline{CE}_{2}	Chip Enables	Input	Synchronous		
ŌĒ	Output Enable	Input	Asynchronous		
R/W	Read/Write Signal	Input	Synchronous		
CEN	Clock Enable	Input	Synchronous		
\overline{BW}_{1} , \overline{BW}_{2} , \overline{BW}_{3} , \overline{BW}_{4}	Individual Byte Write Selects	Input	Synchronous		
CLK	Clock	Input	N/A		
ADV/LD	Advance burst address / Load new address	Input	Synchronous		
LBO	Linear / Interleaved Burst Order	Input	Static		
TMS	Test Mode Select	Input	Synchronous		
TDI	Test Data Input	Input	Synchronous		
ТСК	Test Clock	Input	N/A		
TDO	Test Data Output	Output	Synchronous		
TRST	JTAG Reset (Optional)	Input	Asynchronous		
ZZ	Sleep Mode	Input	Synchronous		
I/O0-I/O31, I/OP1-I/OP4	Data Input / Output	I/O	Synchronous		
Vdd, Vddq	Core Power, I/O Power	Supply	Static		
Vss	Ground	Supply	Static		

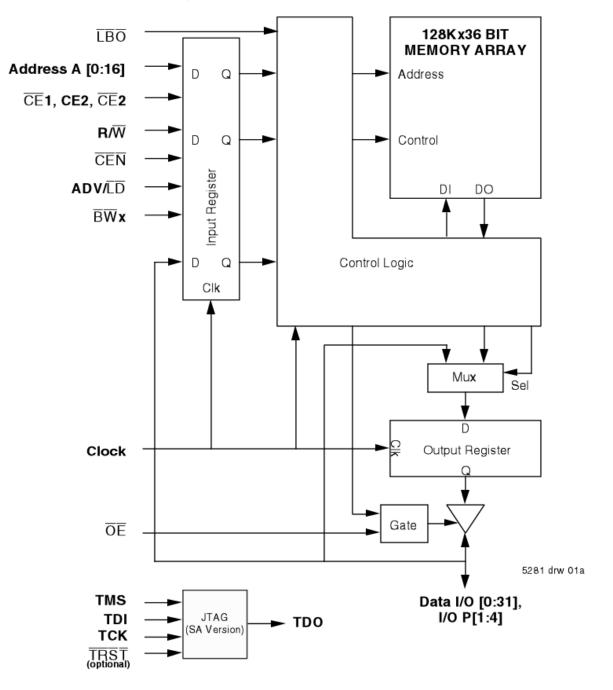
Pin Description Summary

AS8C403601, AS8C401801,128K x 36, 256K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature,3.3V I/O, burst counter, and Pipelined **Outputs Commercial Temperature Ranges**

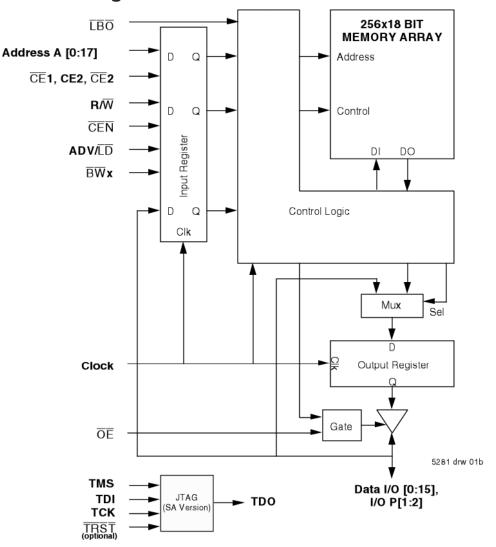
Description continued

The 403601/401801 has an on-chip burst counter. In the burst mode, the 403601/401801 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the LBO input pin. The LBO pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address (ADV/LD = LOW) or increment the internal burst counter (ADV/LD = HIGH).

The 403601/401801 SRAMs utilize Alliance's latest high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP)


Pin Definition⁽¹⁾

Symbol	Pin Function	1/0	Active	Description
A0-A17	Address Inputs	I	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, \overline{CEN} low, and true chip enables.
ADV/LD	Advance / Load	I	N⁄A	ADV/\overline{LD} is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/\overline{LD} is low with the chip deselected, any burst in progress is terminated. When ADV/\overline{LD} is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/\overline{LD} is sampled high.
R/W	Read / Write	Ĩ	N⁄A	R/\overline{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
CEN	Clock Enable	I	LOW	Synchronous Clock Enable Input. When CEN is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, CEN must be sampled low at rising edge of clock.
BW1-BW4	Individual Byte Write Enables	I	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R/W and ADV/LD are sampled low) the appropriate byte write signal (BW1-BW4) must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R/W is sampled high. The appropriate byte(s) of data are written into the device two cycles later. BW1-BW4 can all be tied low if always doing write to the entire 36-bit word.
CE1, CE2	Chip Enables	I	LOW	Synchronous active low chip enable. CE₁ and CE₂ are used with CE₂ to enable the 403601/401801.(CE₁ or CE₂ sampled high or CE₂ sampled low) and ADV/ID low at the rising edge of clock, initiates a deselect cycle The ZBT™ has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE2	Chip Enable	Ţ	HIGH	Synchronous active high chip enable. CE ₂ is used with \overline{CE}_1 and \overline{CE}_2 to enable the chip. CE ₂ has inverted polarity but otherwise identical to \overline{CE}_1 and \overline{CE}_2 .
CLK	Clock	Ĩ	N/A	This is the clock input to the 403601/401801. Except for \overline{OE} , all timing references for the device are made with respect to the rising edge of CLK.
VO0-VO31 VOP1-VOP4	Data input∕Output	VO	NVA	Synchronous data input/output (VO) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
IBO	Linear Burst Order	Ĩ	LOW	Burst order selection input. When IBO is high the Interleaved burst sequence is selected. When IBO is low the Linear burst sequence is selected. IBO is a static input and it must not change during device operation.
Œ	Output Enable	I	LOW	Asynchronous output enable. OE must be low to read data from the403601/1801. When OE is high the I/O pins are in a high-impedance state. OE does not need to be actively controlled for read and write cycles. In normal operation, OE can be tied low.
TMS	Test Mode Select	Ĩ	N⁄A	Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup.
TDI	Test Data Input	Ĩ	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an interna pullup.
тск	Test Clock	t	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup.
TDO	Test Data Output	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAF controller.
TRST	JTAG Reset (Optional)	I	LOW	Optional Asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup. Only available in BGA package.
Z	Sleep Mode	Ĩ	HIGH	Synchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the 403601/1801 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode. This pin has an internal pulldown.
VDD	Power Supply	N/A	N⁄A	3.3V core power supply.
VDDQ	Power Supply	N∕A	N/A	3.3V VO Supply.
Vss	Ground	N⁄A	N/A	Ground.


NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Functional Block Diagram

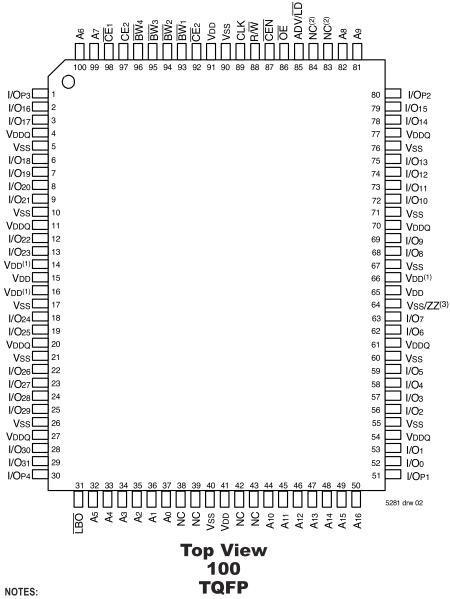
Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Core Supply Voltage	3.135	3.3	3.465	۷
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	۷
Vss	Supply Voltage	0	0	0	۷
V⊮	Input High Voltage - Inputs	2.0		Vdd +0.3	۷
V⊮	Input High Voltage - I/O	2.0		VDDQ +0.3 ⁽²⁾	۷
Vil	Input Low Voltage	-0.3 ⁽¹⁾		0.8	V

NOTES:

1. VIL (min.) = -1.0V for pulse width less than tcyc/2, once per cycle.

2. VIH (max.) = +6.0V for pulse width less than tcyc/2, once per cycle.


rempera	Temperature and Supply voltage								
Grade	Temperature ⁽¹⁾	Vss	Vdd	VDDQ					
Commercial	0°C to +70°C	0V	3.3V±5%	3.3V±5%					
Industrial	-40°C to +85°C	0V	3.3V±5%	3.3V±5%					
NOTES				5281 tbl 05					

Recommended Operating oraturo and Supply Voltag

NOTES:

1. TA is the "instant on" case temperature.

Pin Configuration - 128K x 36

1. Pins 14, 16 and 66 do not have to be connected directly to VDD as long as the input voltage is \geq VIH.

2. Pins 83 and 84 are reserved for future 8M and 16M respectively.

3. Pin 64 does not have to be connected directly to Vss as long as the input voltage is \leq VIL; on the latest die revision this pin supports ZZ (sleep mode).

Pin Configuration - 256K x 18 Ο 80 A10 79 NC 78 NC NC VDDQ 🗆 77 Vss C 76 NC 1/OP1 1/07 6 75 74 1/O8 73 I/O9 🗌 72 71 Vss 🗖 11 70 VDDQ I/O5 I/O4 VSS VDD⁽¹⁾ 12 69 13 68 VDD⁽¹⁾ 14 67 VDD⁽¹⁾ 14 VDD 15 VDD⁽¹⁾ 16 VSS 17 I/O12 18 I/O13 19 VDDQ 20 66 VDD(1) VDD VSS/ZZ⁽³⁾ 1/O3 1/O2 VDDQ 65 64 63 62 61 Vss 21 I/O14 22 60 59 I/O15 23 I/OP2 24 NC 25 58 57 56 55 54 28 53 29 52 NCE 30 51 5281 drw 02a **Top View 100 TQFP**

NOTES:

- 1. Pins 14, 16 and 66 do not have to be connected directly to VDD as long as the input voltage is \geq VIH.
- 2. Pins 83 and 84 are reserved for future 8M and 16M respectively.
- Pin 64 does not have to be connected directly to Vss as long as the input voltage is ≤ ViL; on the latest die revision this pin supports ZZ (sleep mode).

100 Pin TQFP Capacitance⁽¹⁾ (TA = +25° C, f = 1.0MHz)

Symbol Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN Input Capacitance	Vin = 3dV	5	pF
Ciro I/O Capacitance	Vout = 3dV	7	pF

5281 tbl 07

Absolute Maximum Ratings ⁽¹⁾

Symbol	Rating	Commercial & Industrial Values	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ^(3,6)	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM ^(4,6)	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM ^(5,6)	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA ⁽⁷⁾	Commercial Operating Temperature	-0 to +70	°C
	Industrial Operating Temperature	-40 to +85	°C
Твиз	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	2.0	W
Ιουτ	DC Output Current	50	mA
NOTES	•	•	5281 tbl 06

NOTES:

1.

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VDD terminals only.

- 3. VDDQ terminals only.
- 4. Input terminals only.

5. I/O terminals only.

- This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
- 7. TA is the "instant on" case temperature.

1. This parameter is guaranteed by device characterization, but not production tested.

CEN	R/W	Chip ⁽⁵⁾ Enable	ADV/LD	BWx	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	l/O (2 cycles later)
L	L	Select	L	Valid	External	Х	LOAD WRITE	D ⁽⁷⁾
L	Н	Select	L	Х	External	Х	LOAD READ	Q ⁽⁷⁾
L	Х	Х	Н	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ⁽²⁾	D ⁽⁷⁾
L	Х	Х	Н	Х	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ⁽²⁾	Q ⁽⁷⁾
L	Х	Deselect	L	Х	Х	Х	DESELECT or STOP ⁽³⁾	HiZ
L	Х	Х	Н	Х	Х	DESELECT / NOOP	NOOP	HiZ
Н	Х	Х	Х	Х	Х	Х	SUSPEND ⁽⁴⁾	Previous Value

Synchronous Truth Table ⁽¹⁾

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. When ADV/LD signal is sampled high, the internal burst counter is incremented. The R/W signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R/W signal when the first address is loaded at the beginning of the burst cycle.

 Deselect cycle is initiated when either (CE1, or CE2 is sampled high or CE2 is sampled low) and ADV/LD is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.

4. When CEN is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/Os remains unchanged.

5. To select the chip requires $\overline{CE}_1 = L$, $\overline{CE}_2 = L$, $CE_2 = H$ on these chip enables. Chip is deselected if any one of the chip enables is false.

6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes (1)

OPERATION	R/W	BW1	BW2	BW 3 ⁽³⁾	BW4 ⁽³⁾
READ	Н	Х	Х	Х	Х
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (I/O[0:7], I/Op1) ⁽²⁾	L	L	Н	Н	Н
WRITE BYTE 2 (I/O[8:15], I/OP2) ⁽²⁾	L	Н	L	Н	Н
WRITE BYTE 3 (I/O[16:23], I/OP3) ^(2,3)	L	Н	Н	L	Н
WRITE BYTE 4 (I/O[24:31], I/OP4) ^(2.3)	L	Н	Н	Н	L
NO WRITE	L	Н	Н	Н	Н

7

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. Multiple bytes may be selected during the same cycle.

3. N/A for X18 configuration.

Interleaved Burst Sequence Table (LBO=VDD)

	Sequence 1		Sequ	ence 2	Sequ	ence 3	Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	1	0	0	1	0	0

5281 tbl 10

5281 tbl 11

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table (LBO=Vss)

	Sequ	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0	
First Address	0	0	0	1	1	0	1	1	
Second Address	0	1	1	0	1	1	0	0	
Third Address	1	0	1	1	0	0	0	1	
Fourth Address ⁽¹⁾	1	1	0	0	0	1	1	0	

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ⁽¹⁾

CYCLE	n+29	n+30	n+31	n+32	n+33	n+34	n+35	n+36	n+37	
CLOCK										
ADDRESS⁽²⁾ (A0 - A16)	A29	A30	A31	A32	A33	A34	A35	A36	A37	
CONTROL⁽²⁾ (R/W, ADV/LD, BWx)	C29	C30	C31	C32	C33	C34	C35	C36	C37	
DATA⁽²⁾ I/O [0:31], I/O P[1:4]	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35	
									5281 drw 03	3

NOTES:

1. This assumes \overline{CEN} , \overline{CE}_1 , CE_2 , \overline{CE}_2 are all true.

2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Cycle	Address	R/₩	ADV/LD	CE ⁽¹⁾	CEN	BWx	ŌE	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Load read
n+1	Х	Х	Н	Х	L	Х	Х	Х	Burst read
n+2	A1	Н	L	L	Г	Х	L	Qo	Load read
n+3	Х	Х	L	Н	L	Х	L	Q0+1	Deselect or STOP
n+4	Х	Х	н	Х	L	Х	L	Q1	NOOP
n+5	A2	Н	L	L	L	Х	Х	Z	Load read
n+6	Х	Х	Н	Х	L	Х	Х	Z	Burst read
n+7	Х	Х	L	Н	L	Х	L	Q2	Deselect or STOP
n+8	Аз	L	L	L	L	L	L	Q2+1	Load write
n+9	Х	Х	Н	Х	L	L	Х	Z	Burst write
n+10	A4	L	L	L	L	L	Х	D3	Load write
n+11	Х	Х	L	н	Г	Х	Х	D3+1	Deselect or STOP
n+12	Х	Х	Н	Х	Ц	Х	Х	D4	NOOP
n+13	A5	L	L	L	Ц	L	Х	Z	Load write
n+14	A6	Н	L	L	Ц	Х	Х	Z	Load read
n+15	A7	L	L	L	Ц	L	Х	D5	Load write
n+16	Х	Х	Н	Х	Ц	L	L	Q6	Burst write
n+17	A8	Н	L	L	L	Х	Х	D7	Load read
n+18	Х	Х	Н	Х	L	Х	Х	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ⁽²⁾

NOTES:

1. \overline{CE} = L is defined as \overline{CE}_1 = L, \overline{CE}_2 = L and CE_2 = H. \overline{CE} = H is defined as \overline{CE}_1 = H, \overline{CE}_2 = H or CE_2 = L.

2. H = High; L = Low; X = Don't Care; Z = High Impedance.

Read Operation⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Х	L	Х	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	Х	Х	Х	L	Q0	Contents of Address Ao Read Out

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $\overline{CE}_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

Burst Read	Operation	(1)
-------------------	------------------	-----

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup
n+1	Х	Х	Н	Х	L	Х	Х	Х	Clock Setup Valid, Advance Counter
n+2	Х	Х	Н	Х	L	Х	L	Qo	Address Ao Read Out, Inc. Count
n+3	Х	Х	Н	Х	L	Х	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+4	Х	Х	Н	Х	L	Х	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+5	A1	Н	L	L	L	Х	L	Q0+3	Address A0+3 Read Out, Load A1
n+6	Х	Х	Н	Х	L	Х	L	Q0	Address Ao Read Out, Inc. Count
n+7	Х	Х	Н	Х	L	Х	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	Н	L	L	L	Х	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance..

2. $\overline{\text{CE}}$ = L is defined as $\overline{\text{CE}}_1$ = L, $\overline{\text{CE}}_2$ = L and $\overline{\text{CE}}_2$ = H. $\overline{\text{CE}}$ = H is defined as $\overline{\text{CE}}_1$ = H, $\overline{\text{CE}}_2$ = H or CE_2 = L.

Write Operation ⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	₩x	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Х	L	Х	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	Х	L	Х	Х	D0	Write to Address Ao

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $\overline{CE}_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $\overline{CE}_2 = L$.

Burst Write Operation⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	B₩x	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Н	Х	L	Ц	Х	Х	Clock Setup Valid, Inc. Count
n+2	Х	Х	Н	Х	L	Ц	Х	Do	Address Ao Write, Inc. Count
n+3	Х	Х	Н	Х	L	L	Х	D0+1	Address A0+1 Write, Inc. Count
n+4	Х	Х	Н	Х	L	L	Х	D0+2	Address A0+2 Write, Inc. Count
n+5	A1	L	L	L	L	L	Х	D0+3	Address A0+3 Write, Load A1
n+6	Х	Х	Н	Х	L	L	Х	Do	Address Ao Write, Inc. Count
n+7	Х	Х	Н	Х	L	L	Х	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	Х	D1+1	Address A1+1 Write, Load A2

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

5281 tbl 16

5281 tbl 14

Kead Operation with Clock Enable Used '	ation with Clock Enable Used (inable Use	ock Ena	with C	peration	Read Or
---	--------------------------------	------------	---------	--------	----------	---------

	oporat									
Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	B₩x	ŌĒ	I/O	Comments	
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup	
n+1	Х	Х	Х	Х	Н	Х	Х	Х	Clock n+1 Ignored	
n+2	A1	Н	Г	L	L	Х	Х	Х	Clock Valid	
n+3	Х	Х	Х	Х	H	Х	L	Q0	Clock Ignored. Data Q_0 is on the bus.	
n+4	Х	Х	Х	Х	н	Х	L	Q0	Clock Ignored. Data Q_0 is on the bus.	
n+5	A2	Н	L	L	L	Х	L	Q0	Address Ao Read out (bus trans.)	
n+6	Аз	Н	L	L	L	Х	L	Q1	Address A1 Read out (bus trans.)	
n+7	A4	Н	L	L	L	Х	L	Q2	Address A ₂ Read out (bus trans.)	

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. \overline{CE} = L is defined as \overline{CE}_1 = L, \overline{CE}_2 = L and CE_2 = H. \overline{CE} = H is defined as \overline{CE}_1 = H, \overline{CE}_2 = H or CE_2 = L.

	opera								
Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup.
n+1	Х	Х	Х	Х	Н	Х	Х	Х	Clock n+1 Ignored.
n+2	A1	L	L	L	Ц	L	Х	Х	Clock Valid.
n+3	Х	Х	Х	Х	н	Х	Х	Х	Clock Ignored.
n+4	Х	Х	Х	Х	н	Х	Х	Х	Clock Ignored.
n+5	A2	L	L	L	Ц	L	Х	Do	Write Data Do
n+6	Аз	L	L	L	L	L	Х	D1	Write Data D1
n+7	A4	L	L	L	L	L	Х	D2	Write Data D2

Write Operation with Clock Enable Used ⁽¹⁾

NOTES:

H = High; L = Low; X = Don't Care; Z = High Impedance.
 CE = L is defined as CE1 = L, CE2 = L and CE2 = H. CE = H is defined as CE1 = H, CE2 = H or CE2 = L.

5281 tbl 18

110000	oporat									
Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O ⁽³⁾	Comments	
n	Х	Х	L	Н	L	Х	Х	?	Deselected.	
n+1	Х	Х	Г	н	L	Х	Х	?	Deselected.	
n+2	Ao	Н	Г	L	L	Х	Х	Z	Address and Control meet setup	
n+3	Х	Х	L	н	L	Х	Х	Z	Deselected or STOP.	
n+4	A1	Н	L	L	L	Х	L	Q0	Address Ao Read out. Load A1.	
n+5	Х	Х	L	н	L	Х	Х	Z	Deselected or STOP.	
n+6	Х	Х	L	Н	L	Х	L	Q1	Address A1 Read out. Deselected.	
n+7	A2	Н	L	L	L	Х	Х	Z	Address and control meet setup.	
n+8	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.	
n+9	Х	Х	L	Н	L	Х	L	Q2	Address A ₂ Read out. Deselected.	

Read Operation with CHIP Enable Used ⁽¹⁾

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

white	operat			шр с	Πανι	- 030	su ` '			
Cycle	Address	R/W	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O ⁽³⁾	Comments	
n	Х	Х	L	Н	L	Х	Х	?	Deselected.	
n+1	Х	Х	L	Н	L	Х	Х	?	Deselected.	
n+2	Ao	Ц	L	L	L	L	Х	Z	Address and Control meet setup	
n+3	Х	Х	L	н	L	Х	Х	Z	Deselected or STOP.	
n+4	A1	Г	L	L	L	L	Х	Do	Address Do Write in. Load A1.	
n+5	Х	Х	L	Т	L	Х	Х	Z	Deselected or STOP.	
n+6	Х	Х	L	н	L	Х	Х	D1	Address D1 Write in. Deselected.	
n+7	A2	Ц	L	L	L	L	Х	Z	Address and control meet setup.	
n+8	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.	
n+9	Х	Х	L	Н	L	Х	Х	D2	Address D ₂ Write in. Deselected.	

Write Operation with Chip Enable Used ⁽¹⁾

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

12

5281 tbl 20

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V +/-5%)

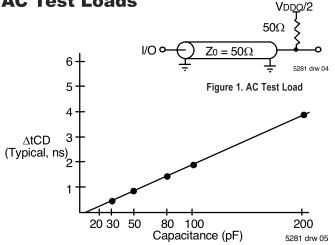
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
L.	Input Leakage Current	VDD = Max., VIN = 0V to VDD		5	μA
IL.I	LBO, JTAG and ZZ Input Leakage Current ⁽¹⁾	V _{DD} = Max., V _{IN} = 0V to V _{DD}		30	μA
Ilo	Output Leakage Current	VOUT = 0V to VDDQ, Device Deselected		5	μA
Vol	Output Low Voltage	IOL = +8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	юн = -8mA, Vdd = Min.	2.4		V
					5281 tbl 21

NOTE:

1. The LBO, TMS, TDI, TCK and TRST pins will be internally pulled to Vop and ZZ will be internally pulled if they are not actively driven in the application.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ⁽¹⁾ (VDD = 3.3V +/-5%)

			200MHz ⁽⁴⁾	200MHz ⁽⁴⁾ 166MHz		133	MHz	100	MHz	
Symbol	Parameter	Test Conditions	Com'l Only	Com'l	Ind	Com'l	Ind	Com'l	Ind	Unit
DD	Operating Power Supply Current	$\begin{array}{l} \mbox{Device Selected, Outputs Open,} \\ \mbox{ADV/LD} = X, \mbox{V}_{DD} = Max., \\ \mbox{Vi}_{N} \geq \mbox{Vi}_{H} \mbox{ or } \leq \mbox{Vi}_{L}, \mbox{ f} = \mbox{fmax}^{(2)} \end{array}$	400	350	360	300	310	250	255	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, $V_{DD} = Max., V_{IN} \ge V_{HD} \text{ or } \le V_{LD}, f$ $= 0^{(2,3)}$	40	40	45	40	45	40	45	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, $V_{DD} = Max., V_{IN} \ge V_{HD} \text{ or } < V_{LD}, f$ $= f_{MAX}^{(2.3)}$	130	120	130	110	120	100	110	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, CEN \geq VIH, VDD = Max., VIN \geq VHD or \leq VLD, f = fMAX ^(2,3)	40	40	45	40	45	40	45	mA
NOTES:									5	i281 tbl 22


1. All values are maximum guaranteed values.

2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tcyc; f=0 means no input lines are changing.

3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V.

4. Only available in 256K x 18 configuration.

AC Test Loads

AC Test Conditions (VDDQ = 3.3V)

Input Pulse Levels	0 to 3V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

AS8C403601, AS8C401801,128K x 36, 256K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature,3.3V I/O, burst counter, and Pipelined Outputs Commercial Temperature Ranges

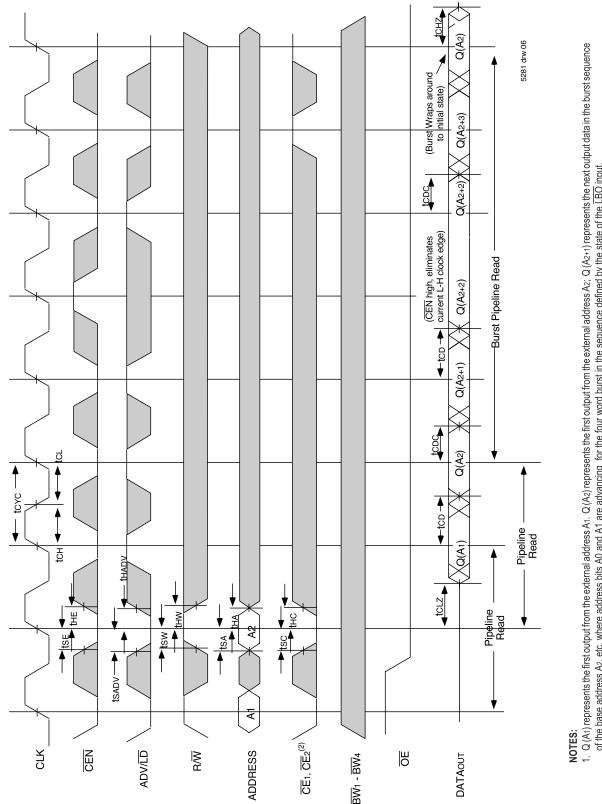
AC Electrical Characteristics

(VDD = 3.3V +/-5%, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	200MHz ⁽⁶⁾		166MHz		133MHz		100MHz		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc	Clock Cycle Time	5		6		7.5		10		ns
tF ⁽¹⁾	Clock Frequence		200		166		133		100	MHz
tсн ⁽²⁾	Clock High Pulse Width	1.8		1.8		2.2		3.2		ns
tcL ⁽²⁾	Clock Low Pulse Width	1.8		1.8		2.2		3.2		ns
Output Par	ameters									1
tCD	Clock High to Valid Data		3.2		3.5		4.2		5	ns
tCDC	Clock High to Data Change	1		1		1		1		ns
tcLz ^(3,4,5)	Clock High to Output Active	1		1		1		1		ns
tCHZ ^(3,4,5)	Clock High to Data High-Z	1	3	1	3	1	3	1	3.3	ns
toe	Output Enable Access Time		3.2		3.5		4.2		5	ns
toLz ^(3,4)	Output Enable Low to Data Active	0		0		0		0		ns
tонz ^(3,4)	Output Enable High to Data High-Z		3.5		3.5		4.2		5	ns
Set Up Tim	es									<u> </u>
tse	Clock Enable Setup Time	1.5		1.5		1.7		2.0		ns
tsa	Address Setup Time	1.5		1.5		1.7		2.0		ns
tsp	Data In Setup Time	1.5		1.5		1.7	_	2.0		ns
tsw	Read/Write (R/W) Setup Time	1.5	-	1.5		1.7		2.0		ns
tsadv	Advance/Load (ADV/LD) Setup Time	1.5		1.5		1.7		2.0		ns
tsc	Chip Enable/Select Setup Time	1.5		1.5		1.7		2.0		ns
tsв	Byte Write Enable (\overline{BWx}) Setup Time	1.5		1.5		1.7		2.0		ns
Hold Times	5									
tHE	Clock Enable Hold Time	0.5		0.5		0.5		0.5		ns
tHA	Address Hold Time	0.5		0.5		0.5		0.5	—	ns
thd	Data In Hold Time	0.5		0.5		0.5		0.5		ns
tHW	Read/Write (R/ \overline{W}) Hold Time	0.5		0.5		0.5		0.5		ns
thadv	Advance/Load (ADV/LD) Hold Time	0.5		0.5		0.5		0.5		ns
tHC	Chip Enable/Select Hold Time	0.5		0.5		0.5	_	0.5		ns
tнв	Byte Write Enable (BWx) Hold Time	0.5		0.5		0.5		0.5		ns

5281 tbl 24

NOTES: 1. tF = 1/tcyc.

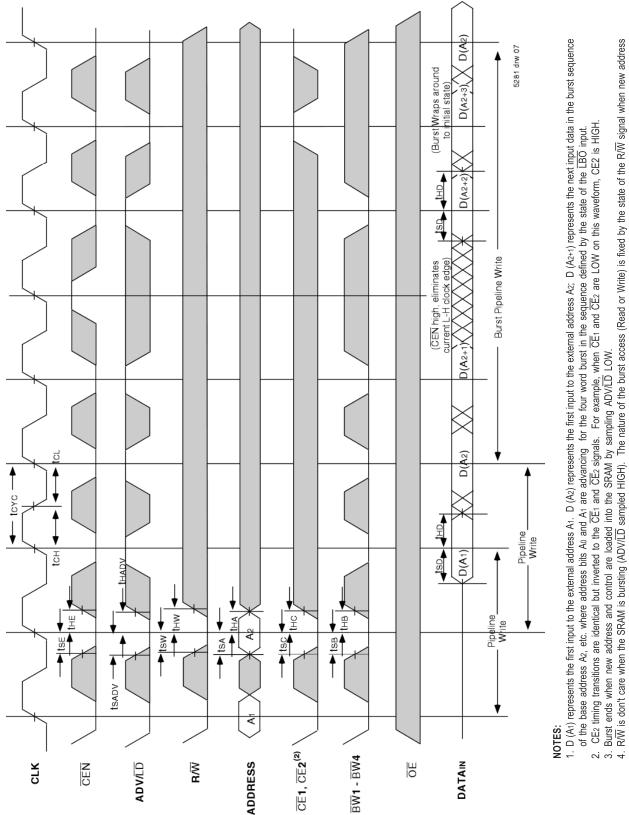

2. Measured as HIGH above 0.6VDDQ and LOW below 0.4VDDQ.

3. Transition is measured ±200mV from steady-state.

5. To avoid bus contention, the output buffers are designed such that tCHZ (device turn-off) is about 1ns faster than tCLZ (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tCLZ is a Min. parameter that is worse case at totally different test conditions (0 deg. C, 3.465V) than tCHZ, which is a Max. parameter (worse case at 70 deg. C, 3.135V).

6. Commercial temperature range only. Only available in 256K x 18 configuration.

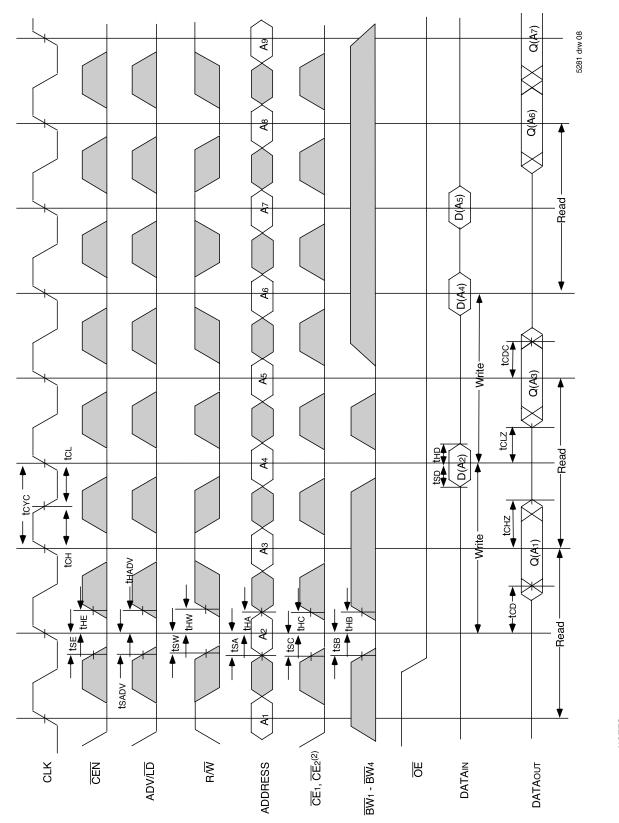
^{4.} These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.


Timing Waveform of Read Cycle ^(1,2,3,4)

of the base address A2, etc. where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state of the <u>LBO</u> input. CE2 timing transitions are identical but inverted to the \overline{CE}_1 and \overline{CE}_2 signals. For example, when \overline{CE}_1 and \overline{CE}_2 are LOW on this waveform, CE2 is HIGH.

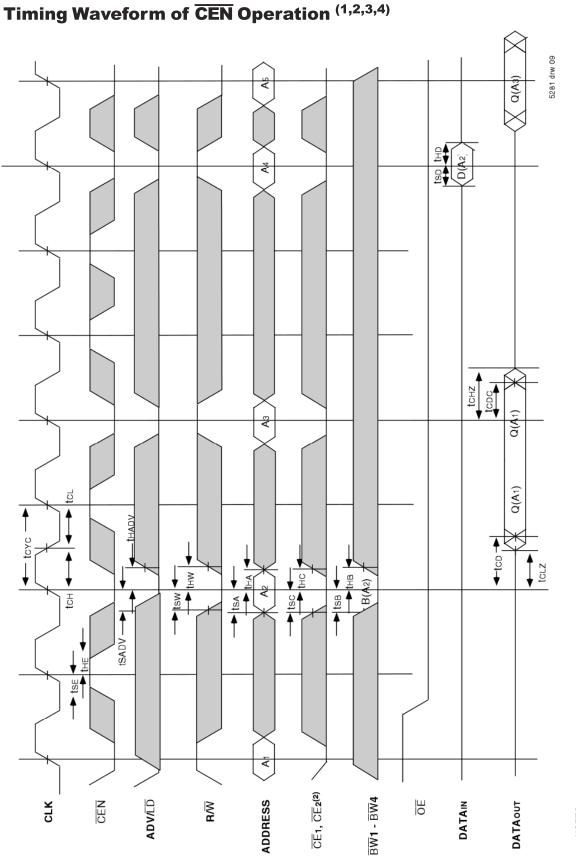
~i ~i ≁i

Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW. R/W is don't care when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/W signal when new address and control are loaded into the SRAM.

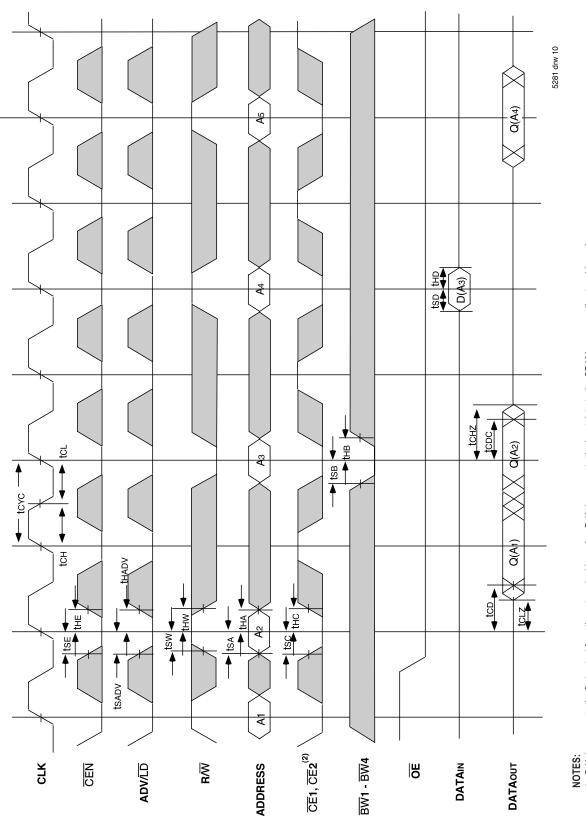


and control are loaded into the SRAM.

Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM. 5.


AS8C403601, AS8C401801,128K x 36, 256K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature,3.3V I/O, burst counter, and Pipelined **Outputs Commercial Temperature Ranges**

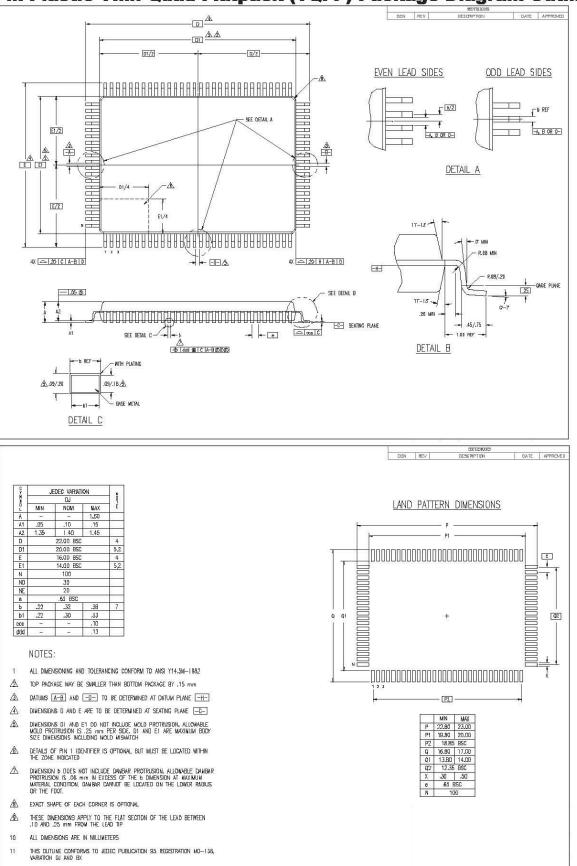
Timing Waveform of Combined Read and Write Cycles ^(1,2,3)


NOTES:

Q (A₁) represents the first output from the external address A₁. D (A₂) represents the input data to the SRAM corresponding to address A₂.
 CE2 timing transitions are identical but inverted to the CE₁ and CE₂ signals. For example, when CE₁ and CE₂ are LOW on this waveform, CE₂ is HIGH.
 Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when RW signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

NOTES:

- Q (A₁) represents the first output from the external address A₁. D (A₂) represents the input data to the SRAM corresponding to address A₂.
 CE2 timing transitions are identical but inverted to the CE₁ and CE₂ signals. For example, when CE₁ and CE₂ are LOW on this waveform, CE₂ is HIGH.
 CEN when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state.
 - 4. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.


Timing Waveform of \overline{CS} Operation ^(1,2,3,4)

- 1. Q (A1) represents the first output from the external address A1. D (A3) represents the input data to the SRAM corresponding to address A3.
- CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH. CEN when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not сi
 - occur. All internal registers in the SRAM will retain their previous state. З.
- Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when RW signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM. 4

19

AS8C403601, AS8C401801,128K x 36, 256K x 18, 3.3V Synchronous SRAMS with ZBT[™] Feature,3.3V I/O, burst counter, and Pipelined Outputs Commercial Temperature Ranges

100-Pin Plastic Thin Quad Flatpack (TQFP) Package Diagram Outline

