Atmel

AT17LV65⁽¹⁾, AT17LV128⁽¹⁾, AT17LV256, AT17LV512, AT17LV010, AT17LV002, AT17LV040

FPGA Configuration EEPROM Memory 3.3V and 5.0V System Support

Note 1. AT17LV65 and AT17LV128 are Not Recommended for New Designs (NRND) and are Replaced by AT17LV256.

DATASHEET

Features

- EE Programmable Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
 - 65,536 x 1-bit⁽¹⁾
 - $t^{(1)}$ = 524,288 x 1-bit bit⁽¹⁾ = 1.048.576 x 1-bit
- 2,097,152 x 1-bit
 4,194,304 x 1-bit

- 131,072 x 1-bit⁽¹⁾ –
- 262,144 x 1-bit
- Supports both 3.3V and 5.0V Operating Voltage Applications
- In-System Programmable (ISP) via 2-wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with the Atmel[®] AT6000, AT40K and AT94K Devices, Altera[®] FLEX[®], APEX[™] Devices, ORCA[®], Xilinx[®] XC3000, XC4000, XC5200, Spartan[®], Virtex[®] FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Very Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available in 6mm x 6mm x 1mm 8-lead LAP (Pin-compatible with 8-lead SOIC Package), 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP Packages
- Emulation of the Atmel AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- High-reliability
 - Endurance: 100,000 Write Cycles
 - Data Retention: 90 Years for Industrial Parts (at 85°C)
- Green (Pb/Halide-free/RoHS Compliant) Package Options Available

Description

The AT17LV FPGA Configuration EEPROMs (Configurators) provide an easy-touse, cost-effective configuration memory solution for Field Programmable Gate Arrays. The AT17LV devices are packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP options(Table 1). The AT17LV Configurators use a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function during programming. These devices also support a write protection mechanism within its programming mode. The AT17LV configurators can be programmed with industry-standard programmers, the Atmel ATDH2200E Programming Kit, or the Atmel ATDH2225 ISP Cable.

Table 1. AT17LV Packages

Package	AT17LV65/128/256 ⁽⁴⁾	AT17LV512/010	AT17LV002	AT17LV040
8-lead LAP	Yes	Yes	Yes	(3)
8-lead PDIP	Yes	Yes	-	—
8-lead SOIC	Yes	Use 8-lead LAP ⁽¹⁾	Use 8-lead LAP ⁽¹⁾	(3)
20-lead PLCC	Yes	Yes	Yes	_
20-lead SOIC	Yes ⁽²⁾	—	Yes ⁽²⁾	—
44-lead TQFP			Yes	Yes

Notes: 1. The 8-lead LAP package has the same footprint as the 8-lead SOIC. Since an 8-lead SOIC package is not available for the AT17LV512/010/002 devices, it is possible to use an 8-lead LAP package instead.

2. The pinout for the AT17LV65 (NRND), AT17LV128 (NRND), and AT17LV256 is not pin-for-pin compatible with the AT17LV512/010/002 devices.

3. Refer to the AT17F datasheet which is available on the Atmel website.

4. The AT17LV65 and AT17LV128 are not recommended for new designs (NRND).

1. Pin Configuration and Descriptions

Pin	Description
DATA	Three-state Data Output for Configuration. Open-collector bi-directional pin for programming.
CLK	Clock Input. Used to increment the internal address and bit counter for reading and programming.
WP1	Write Protect (1) . Used to protect portions of memory during programming. Disabled by default due to internal pull-down resistor. This input pin is not used during FPGA loading operations. This pin is only available on AT17LV512/010/002 devices.
RESET/OE	RESET (Active Low) / Output Enable (Active High) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed active Low. This document describes the pin as RESET/OE.
WP	Write Protect Input (when \overline{CE} is Low) during programming only ($\overline{SER}_EN \text{ Low}$). When WP is Low, the entire memory can be written. When WP is enabled (High), the lowest block of the memory cannot be written. This pin is only available on the AT17LV65 (NRND), AT17LV128 (NRND), and the AT17LV256.
WP2	Write Protect (2). Used to protect portions of memory during programming. Disabled by default due to internal pull-down resistor. This input pin is not used during FPGA loading operations. This pin is only available on the AT17LV512/010.
CE	Chip Enable Input (Active Low). A Low level (with OE High) allows CLK to increment the address counter and enables the data output driver. A High level on CE disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will <i>not</i> enable/disable the device in the Two-Wire Serial Programming mode (SER_EN Low).
GND	Ground. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.
CEO	Chip Enable Output (Active Low). This output goes Low when the address counter has reached its maximum value. In a daisy chain of AT17LV devices, the \overline{CEO} pin of one device must be connected to the \overline{CE} input of the next device in the chain. It will stay Low as long as \overline{CE} is Low and OE is High. It will then follow CE until OE goes Low; thereafter, \overline{CEO} will stay High until the entire EEPROM is read again. This \overline{CEO} feature is not available on the AT17LV65 (NRND).
A2	Device Selection Input, A2 . This is used to enable (or select) the device during programming (i.e., when SER_EN is Low). A2 has an internal pull-down resistor.
READY	Open Collector Reset State Indicator. Driven Low during power-up reset, released when power-up is complete. It is recommended to use a $4.7k\Omega$ pull-up resistor when this pin is used.
SER_EN	Serial Enable must be held High during FPGA loading operations. Bringing \overline{SER}_{EN} Low enables the 2-wire Serial Programming Mode. For non-ISP applications, \overline{SER}_{EN} should be tied to V_{CC} .
V _{cc}	Power Supply. 3.3V (\pm 10%) and 5.0V (\pm 10%) power supply pin.

Table 1-2. Pin Configurations

		AT17L	.V65/128/	256 ⁽²⁾	AT17LV	512/010		AT17L	/002		AT17LV040
Name	I/O	8-lead DIP/LAP/ SOIC	20-lead PLCC	20-lead SOIC	8-lead DIP/ LAP	20-lead PLCC	8-lead LAP	20-lead PLCC	20-lead SOIC	44-lead TQFP	44-lead TQFP
DATA	I/O	1	2	2	1	2	1	2	1	40	40
CLK	I	2	4	4	2	4	2	4	3	43	43
WP1	I	_	-	_	_	5	-	5	_	7	-
RESET/ OE	I	3	6	6	3	6	3	6	8	13	13
WP2	I	_	_	_	_	7	_	7	_	_	_
CE	I	4	8	8	4	8	4	8	10	15	15
GND		5	10	10	5	10	5	10	11	18	18
CEO ⁽¹⁾	0	6	14	1/	6	14	6	14	13	21	21
A2	I	U	17	14		-	_	21	21		
READY	0	_	_	_	_	15	_	15	_	23	23
SER_EN	I	7	17	17	7	17	7	17	18	35	35
V _{cc}		8	20	20	8	20	8	20	20	38	38

Notes: 1. The \overline{CEO} feature is not available on the AT17LV65 (NRND).

2. The AT17LV65 and AT17LV128 are not recommended for new designs.

Notes: 1. Drawings are not to scale.

- 2. This pin is only available on the AT17LV65 (NRND), AT17LV128 (NRND), and AT17LV256.
- 3. This pin is only available on the AT17LV512/010/002.
- 4. This pin is not available on the AT17LV65 (NRND).
- 5. The AT17LV65 and AT17LV128 are not recommended for new designs.

2. Block Diagram

Figure 2-1. Block Diagram

- Notes: 1. This pin is only available on the AT17LV65 (NRND), AT17LV128 (NRND), and AT17LV256.
 - 2. This pin is only available on AT17LV512, AT17LV010, and AT17LV002.
 - 3. The CEO feature is not available on the AT17LV65 (NRND).

3. Device Description

The control signals for the configuration EEPROM (\overline{CE} , RESET/ \overline{OE} and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ \overline{OE} and \overline{CE} pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ \overline{OE} is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The \overline{CE} pin also controls the output of the AT17LV configurator. If \overline{CE} is held High after the RESET/ \overline{OE} reset pulse, the counter is disabled and the DATA output pin is tri-stated. When \overline{OE} is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ \overline{OE} is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of \overline{CE} .

When the configurator has driven out all of its data and \overline{CEO} is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

This is the default setting for the device. Since almost all FPGAs use RESET Low and OE High, this document will describe RESET/OE.

4. FPGA Master Serial Mode Summary

The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17LV Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode.

This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Xilinx applications.

5. Control of Configuration

Most connections between the FPGA device and the AT17LV Serial EEPROM are simple and self-explanatory.

- The DATA output of the AT17LV configurator drives DIN of the FPGA devices.
- The master FPGA CCLK output drives the CLK input of the AT17LV configurator.
- The CEO output of any AT17LV configurator drives the CE input of the next configurator in a cascaded chain of EEPROMs.
- SER_EN must be connected to V_{CC} (except during ISP).
- The READY⁽¹⁾ pin is available as an open-collector indicator of the device's reset status; it is driven Low while the device is in its power-on reset cycle and released (tri-stated) when the cycle is complete.

Note: 1. This pin is not available for the AT17LV65 (NRND), AT17LV128 (NRND), and AT17LV256.

6. Cascading Serial Configuration EEPROMs

For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory.

After the last bit from the first configurator is read, the clock signal to the configurator asserts its \overline{CEO} output Low and disables its DATA line driver. The second configurator recognizes the Low level on its \overline{CE} input and enables its DATA output.

After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level.

If the address counters are not to be reset upon completion, then the RESET/OE input can be tied to its inactive (High) level.

The AT17LV65 (NRND) devices do not have the \overline{CEO} feature to perform cascaded configurations.

7. AT17LV Reset Polarity

The AT17LV configurator allows the user to program the reset polarity as either RESET/OE or RESET/OE. This feature is supported by industry-standard programmer algorithms.

8. Programming Mode

The programming mode is entered by bringing \overline{SER}_{EN} Low. In this mode the chip can be programmed by the 2-wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip.

9. Standby Mode

The AT17LV configurators enter a low-power standby mode whenever \overline{CE} is asserted High. In this mode, the AT17LV65 (NRND), AT17LV128 (NRND), or the AT17LV256 configurator consumes less than 50µA of current at 3.3V (100µA for the AT17LV512/010 and 200µA for the AT17LV002/040). The output remains in a high-impedance state regardless of the state of the \overline{OE} input.

10. Electrical Specifications

10.1 Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature
Voltage on Any Pin with Respect to Ground 0.1V to V_{CC} +0.5V
Supply Voltage (V $_{\rm CC}$)
Maximum Soldering Temp. (10s @ 1/16 in.)
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100pF)

*Notice: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

10.2 Operating Conditions

Table 10-1. Operating Conditions

			3.3V		5.0V		
Symbol	Description		Min	Max	Min	Max	Units
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	4.5	5.5	V

10.3 DC Characteristics

Table 10-2. DC Characteristics for V_{CC} = 3.3V ± 10%

		AT17LV65	AT17LV65/128/256 ⁽¹⁾		/512/010	AT17L	/002/40	
Symbol	Description	Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage	2.0	V _{CC}	2.0	V _{cc}	2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage	0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2mA)	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3mA)		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode		5		5		5	mA
I _L	Input or Output Leakage Current ($V_{IN} = V_{CC}$ or GND)	-10	10	-10	10	-10	10	μA
I _{CCS}	Supply Current, Standby Mode		100		100		150	μA

Note: 1. The AT17LV65 and AT17LV128 are not recommended for new designs.

		AT17LV65/128/256 ⁽¹⁾		AT17LV512/010		AT17LV002/040		
Symbol	Description	Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage	2.0	V _{cc}	2.0	V _{CC}	2.0	V _{cc}	V
V _{IL}	Low-level Input Voltage	0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2mA)	3.60		3.76		3.76		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3mA)		0.37		0.37		0.37	V
I _{CCA}	Supply Current, Active Mode		10		10		10	mA
IL	Input or Output Leakage Current (V_{IN} = V_{CC} or GND)	-10	10	-10	10	-10	10	μA
I _{CCS}	Supply Current, Standby Mode		150		200		350	μA

Table 10-3. DC Characteristics for V_{CC} = 5.0V ± 10%

Note: 1. The AT17LV65 and AT17LV128 are not recommended for new designs.

10.4 AC Characteristics

Table 10-4. AC Characteristics for $V_{CC} = 3.3V \pm 10\%$

		AT17LV65/128/256 ⁽³⁾ AT17LV512/010/002/040		/010/002/040		
Symbol	Description	Min	Мах	Min	Мах	Units
T _{OE} ⁽¹⁾	OE to Data Delay		55		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		80		60	ns
Т _{ОН}	Data Hold from \overline{CE} , OE, or CLK	0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		50	ns
T _{LC}	CLK Low Time	25		25		ns
T _{HC}	CLK High Time	25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	60		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10	MHz

Notes: 1. AC test lead = 50pF.

- 2. Float delays are measured with 5pF AC loads. Transition is measured ± 200mV from steady-state active levels.
- 3. The AT17LV65 and AT17LV128 are not recommended for new designs.

		AT17LV65/128/256 ⁽³⁾ AT17LV512/		/010/002/040		
Symbol	Description	Min	Мах	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		60		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		60		55	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		60		40	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		45		35	ns
F _{MAX}	Maximum Clock Frequency		8		10	MHz

Notes: 1. AC test lead = 50pF.

- 2. Float delays are measured with 5pF AC loads. Transition is measured ± 200mV from steady-state active levels.
- 3. The AT17LV65 and AT17LV128 are not recommended for new designs.

Table 10-6. AC Characteristics for $V_{CC} = 5V \pm 10\%$

		AT17LV65/128/256 ⁽³⁾ AT17LV512/010/002/040		/010/002/040		
Symbol	Description	Min	Max	Min	Мах	Units
T _{OE} ⁽¹⁾	OE to Data Delay		35		35	ns
T _{CE} ⁽¹⁾	CE to Data Delay		45		45	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		55		50	ns
Т _{ОН}	Data Hold from \overline{CE} , OE, or CLK	0		0		ns
T _{DF} ⁽²⁾	\overline{CE} or OE to Data Float Delay		50		50	ns
T _{LC}	CLK Low Time	20		20		ns
T _{HC}	CLK High Time	20		20		ns
T _{SCE}	CE Setup Time to CLK (To Guarantee Proper Counting)	40		25		ns
T _{HCE}	CE Hold Time from CLK (To Guarantee Proper Counting)	0		0		ns
T _{HOE}	OE High Time (Guarantees Counter is Reset)	20		20		ns
F _{MAX}	Maximum Clock Frequency		12.5		15	MHz

Notes: 1. AC test lead = 50pF.

- 2. Float delays are measured with 5pF AC loads. Transition is measured ± 200mV from steady-state active levels.
- 3. The AT17LV65 and AT17LV128 are not recommended for new designs.

		AT17LV65/128/256 ⁽³⁾ AT17LV512/0		/010/002/040		
Symbol	Description	Min	Max	Min	Мах	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		40		40	ns
T _{OCE} ⁽¹⁾	\overline{CE} to \overline{CEO} Delay		35		35	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		35		30	ns
F _{MAX}	Maximum Clock Frequency		10		12.5	MHz

Notes: 1. AC test lead = 50pF.

- 2. Float delays are measured with 5pF AC loads. Transition is measured ± 200mV from steady-state active levels.
- 3. The AT17LV65 and AT17LV128 are not recommended for new designs.

10.5 Thermal Resistance Coefficients

Package Type			AT17LV65/128/256 ⁽²⁾	AT17LV512/010	AT17LV002	AT17LV040
8CN4	Leadless Array Package (LAP)	θ _{JC} [°C/W]	45	45	45	—
		θ _{JA} [°C/W] ⁽¹⁾	115.71	135.71	159.60	
8P3	Plastic Dual Inline Package (PDIP)	θ _{JC} [°C/W]	37	37		_
		θ _{JA} [°C/W] ⁽¹⁾	107	107		_
8S1	Plastic Gull Wing Small Outline (SOIC)	θ _{JC} [°C/W]	45			
		θ _{JA} [°C/W] ⁽¹⁾	150			
20J	Plastic Leaded Chip Carrier (PLCC)	θ _{JC} [°C/W]	35	35	35	_
		θ _{JA} [°C/W] ⁽¹⁾	90	90	90	
20S2	Plastic Gull Wing Small Outline (SOIC)	θ _{JC} [°C/W]				_
		θ _{JA} [°C/W] ⁽¹⁾				
44A	Thin Plastic Quad Flat Package (TQFP)	θ _{JC} [°C/W]	_	_	17	17
		θ _{JA} [°C/W] ⁽¹⁾			62	62

Table 10-8. Thermal Resistance Coefficients

Notes: 1. Airflow = 0ft/min.

2. The AT17LV65 and AT17LV128 are not recommended for new designs.

11. Ordering Information

11.1 Ordering Code Detail

11.2 Ordering Information

Memory Size	Atmel Ordering Code	Lead Finish	Package	Voltage	Operation Range
	AT17LV256-10CU	CuNiAu (Lead-free/Halogen-free)	8CN4	3.0V to 5.5V	Industrial (-40°C to 85°C)
	AT17LV256-10JU	Sn (Lead-free/Halogen-free)	20J		
256-Kbit	AT17LV256-10NU		8S1		
	AT17LV256-10PU		8P3		
	AT17LV256-10SU		20S2		
512-Khit	AT17LV512-10CU	CuNiAu (Lead-free/Halogen-free)	8CN4	3.0V to 5.5V	Industrial (-40°C to 85°C)
	AT17LV512-10JU	Sn (Lead-free/Halogen-free)	20J		
	AT17LV010-10CU	CuNiAu (Lead-free/Halogen-free)	8CN4	3.0V to 5.5V	Industrial (-40°C to 85°C)
1-Mbit	AT17LV010-10JU	Sn	20J		
	AT17LV010-10PU	(Lead-free/Halogen-free)	8P3		
	AT17LV002-10CU	CuNiAu (Lead-free/Halogen-free)	8CN4		
2-Mbit	AT17LV002-10JU	AT17LV002-10JU		3.0V to 5.5V	Industrial
	AT17LV002-10SU	Sn (Lead-free/Halogen-free)	20S2	-	(-40 C to 85 C)
	AT17LV002-10TQU		44A		
4-Mbit	AT17LV040-10TQU	Sn (Lead-free/Halogen-free)	44A	3.0V to 5.5V	Industrial (-40°C to 85°C)

Package Type				
8CN4	8-lead, 6mm x 6mm x 1mm, Leadless Array Package (LAP) (Pin-compatible with 8-lead SOIC Packages)			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)			
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)			
20S2	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)			
44A	44-lead, Thin (1.0mm) Plastic Quad Flat Package Carrier (TQFP)			

Atmel

12. Packaging Information

12.1 8CN4 – LAP

Atmel

Atmel

Atmel

12.4 20J - PLCC

Atmel

12.6 44A – TQFP

13. Revision History

Rev. No.	Date	History
2321J	10/2014	The AT17LV65 and AT17LV128 are not recommended for new designs.
		Removed the commercial options.
		Updated the 8P3, 8S1, 20S2, and 44A package outline drawings, ordering code details, ordering code table, document's template, Atmel logos, disclaimer page.
23211	02/2008	Removed -10SC, 10SI, -10TQC, -10TQI, -10BJC and -10BJI devices from ordering information.
2321H	03/2006	Added last-time buy for AT17LVXXX-10CC and AT17LVXXX-10CI.

