
Features

٠

- Industry Standard Architecture
 - Low-cost Easy-to-use Software Tools
- High-speed, Electrically Erasable Programmable Logic Devices
 - CMOS and TTL Compatible Inputs and Outputs
 - Input and I/O Pull-up Resistors
- Advanced Flash Technology
 - Reprogrammable
 - 100% Tested
- High-reliability CMOS Process
 - 20 year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200mA Latchup Immunity
- Full Military Temperature Ranges
- Dual-in-line and Surface Mount Packages in Standard Pinouts
- PCI Compliant

Figure 0-1. Logic Diagram

Figure 0-2. **Pin Configurations**

All Pinouts Top View

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bidirectional Buffers
*	No Internal Connection
V _{cc}	+5V Supply

TS	SOP	DIP/S	OIC	LCC/PLCC
CLK/IN 1 IN 2 IN 3 IN 4 IN 5 IN 6 IN 7 IN 8 IN 9 IN 10 IN 10 IN 11 GND 12	24 VCC 23 VO 22 VO 21 VO 20 VO 19 VO 18 VO 17 VO 16 VO 15 VO 14 VO 13 IN	CLK/IN 1 IN 2 IN 3 IN 4 IN 5 IN 6 IN 7 IN 8 IN 9 IN 10 IN 11 GND 12	24 2 VCC 23 1/0 22 1/0 21 1/0 20 1/0 19 1/0 18 1/0 17 1/0 16 1/0 15 1/0 14 1/0 13 1/1	N N N N N N N N N N N N N N N N N N N

High-performance Electrically **Erasable** Programmable **Logic Device**

Atmel ATF22V10B

0250M-PLD-7/10

1. Description

The Atmel[®] ATF22V10B is a high-performance CMOS (electrically erasable) programmable logic device (PLD) which utilizes the Atmel proven electrically erasable Flash memory technology. Speeds down to 7.5ns and power dissipation as low as 10mA are offered. All speed ranges are specified over the full 5V \pm 10% range for military and industrial temperature ranges, and 5V \pm 5% for commercial temperature ranges.

Several low-power options allow selection of the best solution for various types of power-limited applications. Each of these options significantly reduces total system power and enhances system reliability.

Absolute Maximum Ratings* 2.

Temperature Under Bias55°C to +125°C	*NOTICE:	Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent dam-
Storage Temperature65°C to +150°C		age to the device. This is a stress rating only and functional operation of the device at these or any
Voltage on Any Pin with		other conditions beyond those indicated in the
Respect to Ground2.0V to +7.0V ⁽¹⁾		operational sections of this specification is not implied. Exposure to absolute maximum rating
Voltage on Input Pins with Respect to Ground		conditions for extended periods may affect device reliability.
During Programming2.0V to +14.0V ⁽¹⁾	Note: 1.	Minimum voltage is -0.6V DC, which may under- shoot to -2.0V for pulses of less than 20ns.
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾		Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20ns.

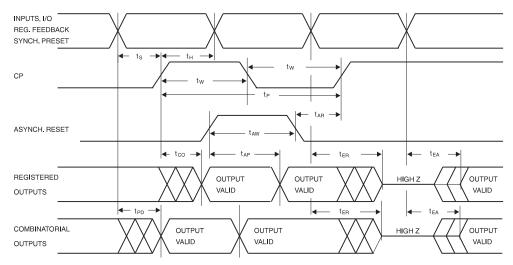
DC and AC Operating Conditions 3.

	Commercial	Industrial	Military
Operating Temperature	0°C - 70°C (Ambient)	-40°C - 85°C (Ambient)	-55°C - 125°C (Case)
V _{CC} Power Supply	$5V \pm 5\%$	$5V\pm10\%$	$5V\pm10\%$

1. The shaded devices are obsolete Note:

3.1 DC Characteristics

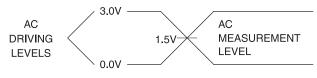
Symbol	Parameter	Condition			Min	Тур	Max	Unite	
I _{IL}	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}$ (Max)				-35	-100	μA	
I _{IH}	Input or I/O High Leakage Current	$3.5 \leq V_{IN} \leq V_{CC}$				10	μA		
	Power Supply Current,	V _{CC} = Max,		Com.		85	120	mA	
I _{CC}	Standby	V _{IN} = Max, Outputs Open	B-7	Ind., Mil.		85	140	mA	
			B-10	Com./Ind.		85/85	120/140	mA	
			B-10	Mil.		85	140	mA	
			B-15	Com./Ind.		65/65	90/115	mA	
		V _{CC} = Max,	D-10	Mil.		65	115	mA	
I _{CC}	Power Supply Current, Standby	V _{IN} = Max,	D 05	Com.		65	90	mA	
	,	Outputs Open	B-25	Ind., Mil.		65	115	mA	
			BQ-15	Com.		35	55	mA	
			BQL-20, -25	Com.		5	10	mA	
				Ind., Mil.		5	15	mA	
		V _{CC} = Max, Outputs Open, f = 15MHz	B-7 B-10	Com.		90	120	mA	
				Mil., Ind.		90	145	mA	
				Com./Ind.		90/90	120/145	mA	
				Mil.		90	150	mA	
				D. / F	Com./Ind.		65/65	90/120	mA
I _{CC2}	Clocked Power Supply Current		B-15	Mil.		65	150	mA	
			B-25	Com.		65	90	mA	
				Ind., Mil.		65	120	mA	
			BQ-15	Com.		40	60	mA	
				Com.		20	50	mA	
			BQL-20, -25	Ind., Mil.		20	70	mA	
I _{OS} ⁽¹⁾	Output Short Circuit Current	V _{OUT} = 0.5V					-130	mA	
V _{IL}	Input Low Voltage				-0.5		0.8	V	
V _{IH}	Input High Voltage				2.0		V _{CC} + 0.75	V	
V		$V_{IN} = V_{IH} \text{ or } V_{IL},$	I _{OL} = 16mA	Com., Ind.			0.5	V	
V _{OL}	Output Low Voltage	$V_{CC} = Min$	I _{OL} = 12mA	Mil.			0.5	V	
V _{OH}	Output High Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = Min$	I _{OH} = -4.0mA		2.4			v	


Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec

2. The shaded devices are obsolete

4. AC Waveforms⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified


5. AC Characteristics⁽¹⁾

		-	10	-1	15	
Symbol	Parameter	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Combinatorial Output	3	10	3	15	ns
t _{CO}	Clock to Output	2	6.5	2	8	ns
t _{CF}	Clock to Feedback		2.5		2.5	ns
t _S	Input or Feedback Setup Time	4.5		10		ns
t _H	Hold Time	0		0		ns
	External Feedback 1/(t _S + t _{CO})	90		55.5		MHz
f _{MAX}	Internal Feedback 1/(t _S + t _{CF})	142		69		MHz
	No Feedback 1/(t _{WH} + t _{WL})	142		83.3		MHz
t _w	Clock Width (t_{WL} and t_{WH})	3.5		6		ns
t _{EA}	Input or I/O to Output Enable	3	10	3	15	ns
t _{ER}	Input or I/O to Output Disable	3	9	3	15	ns
t _{AP}	Input or I/O to Asynchronous Reset of Register	3	12	3	20	ns
t _{AW}	Asynchronous Reset Width	8		15		ns
t _{AR}	Asynchronous Reset Recovery Time	6		10		ns
t _{SP}	Setup Time, Synchronous Preset	6		10		ns
t _{SPR}	Synchronous Preset to Clock Recovery Time	8		10		ns

Notes: 1. See ordering information for valid part numbers

4

6. Input Test Waveforms and Measurement Levels

 $t_R, t_F < 3ns$

7. Output Test Loads

* All except -7 which is R2 = 300Ω

8. Pin Capacitance

 $f = 1MHz, T = 25^{\circ}C^{(1)}$

	Тур	Max	Units	Conditions
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested

9. Power-up Reset

The registers in the Atmel[®] ATF22V10B are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The $V_{\rm CC}$ rise must be monotonic
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high
- 3. The clock must remain stable during t_{PR}

10. Preload of Registered Outputs

The Atmel[®] ATF22V10B registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

Figure 10-1.

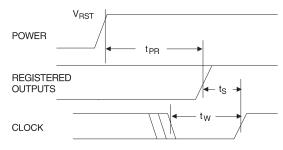


Table 10-1.

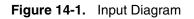
Parameter	Description	Тур	Max	Units
t _{PR}	Power-up Reset Time	600	1,000	ns
V _{RST}	Power-up Reset Voltage	3.8	4.5	V

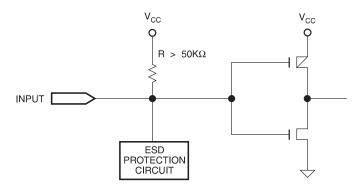
11. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF22V10B fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

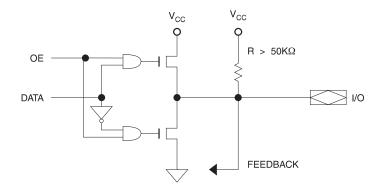
The security fuse should be programmed last, as its effect is immediate.

12. Electronic Signature Word

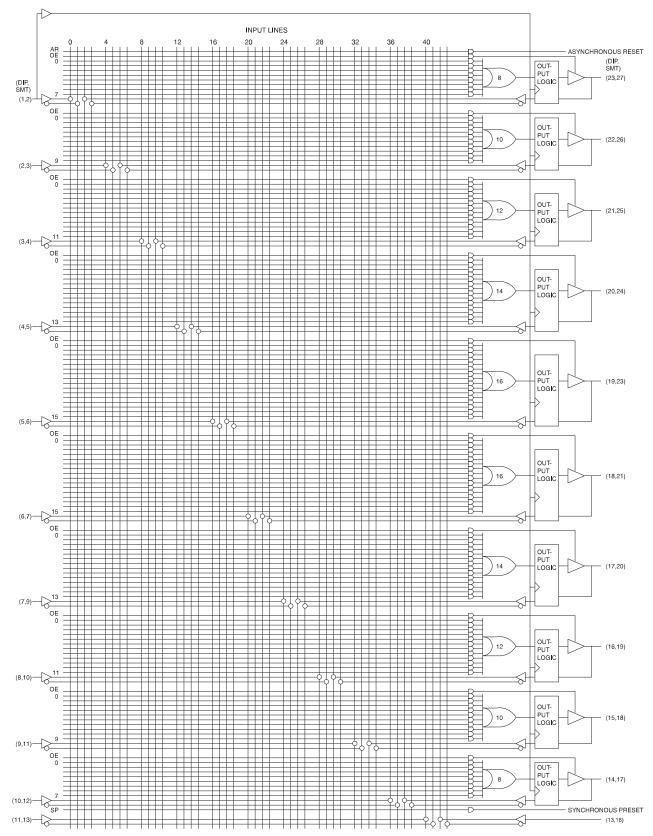

There are 64-bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

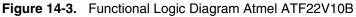

13. Programming/Erasing

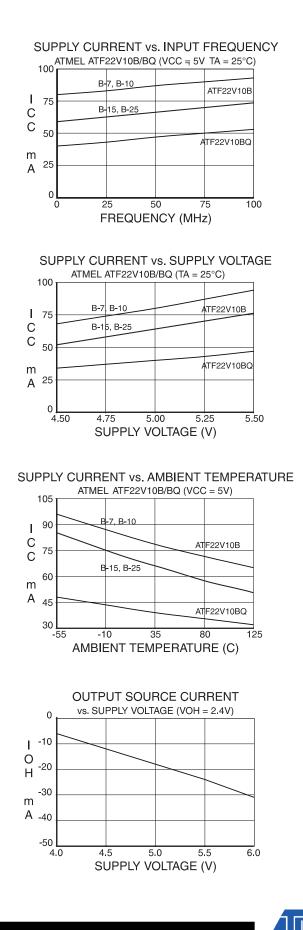
Programming/erasing is performed using standard PLD programmers. See *CMOS PLD Programming Hardware and Software Support* for information on software/programming.

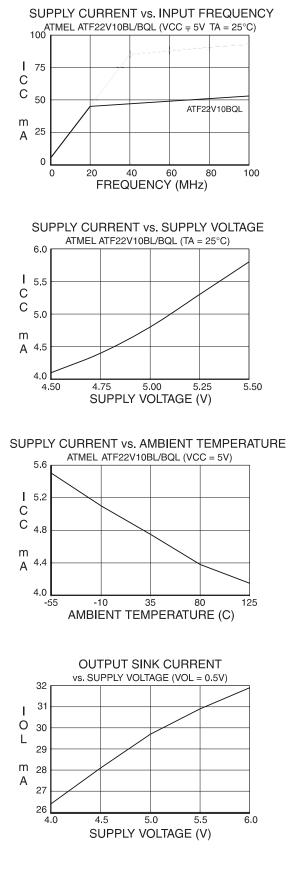

14. Input and I/O Pull-ups

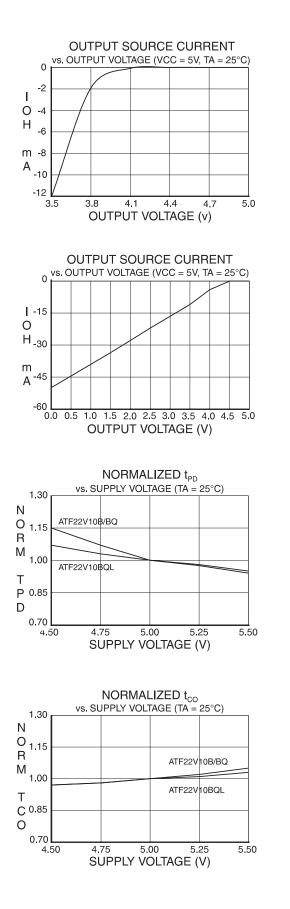
All Atmel[®] ATF22V10B family members have internal input and I/O pull-up resistors. Therefore, whenever inputs or I/Os are not being driven externally, they will float to V_{CC} . This ensures that all logic array inputs are at known states. These are relatively weak active pull-ups that can easily be overdriven by TTL-compatible drivers (see input and I/O diagrams below).

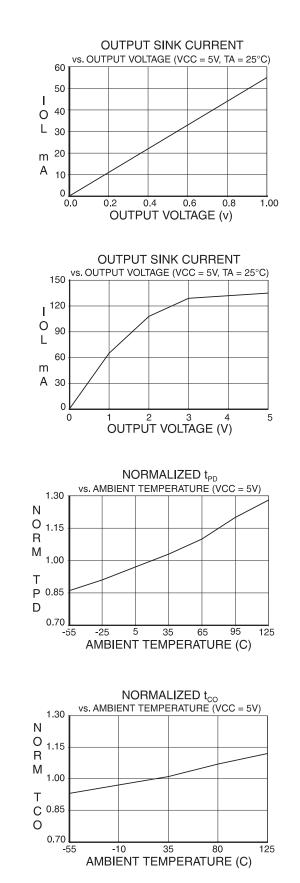


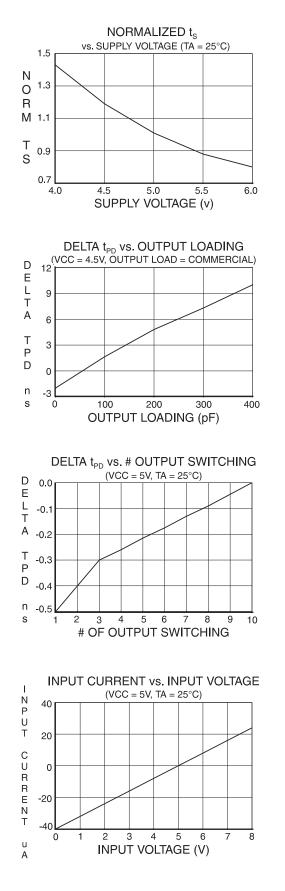


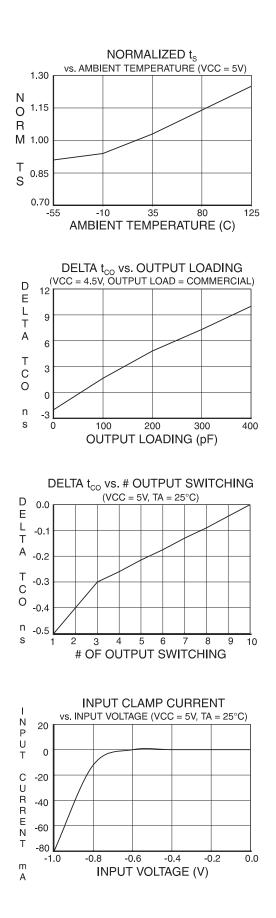





8







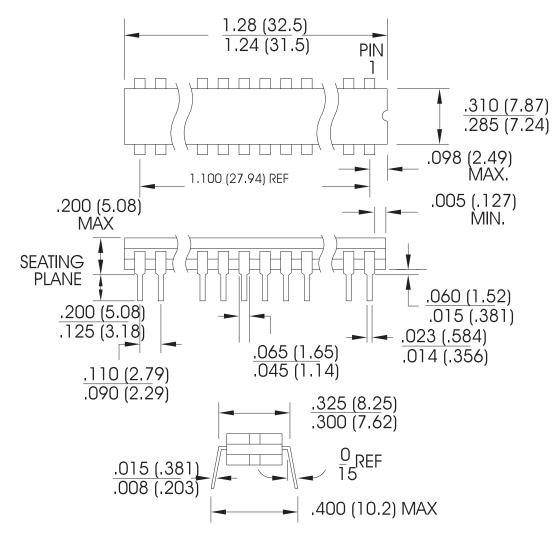
15. Ordering Information

15.1 Atmel ATF22V10B⁽²⁾ Ordering Detail

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
10	4.5 6.5	ATF22V10B-10GM/883 ATF22V10B-10NM/883	24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant	
		5962-89841 06LA 5962-89841 063X	24D3 28L	Military (-55°C to 125°C) Class B, Fully Compliant	
15	10	8	ATF22V10B-15GM/883 ATF22V10B-15NM/883	24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant
13	10	0	5962-89841 03LA 5962-89841 033X	24D3 28L	Military (-55°C to 125°C) Class B, Fully Compliant

15.2 Atmel ATF22V10BQ(L)^(1,2) Ordering Detail

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
20) 14 12	ATF22V10BQL-20GM/883 ATF22V10BQL-20NM/883	24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant	
20		5962-89841 14 LA 5962-89841 14 3X	24D3 28L	Military (-55°C to 125°C) Class B, Fully Compliant	
25	15	15	ATF22V10BQL-25GM/883 ATF22V10BQL-25NM/883	24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant
20	13	13	5962-89841 13 LA 5962-89841 13 3X	24D3 28L	Military (-55°C to 125°C) Class B, Fully Compliant


Notes: 1. The shaded devices are obsolete

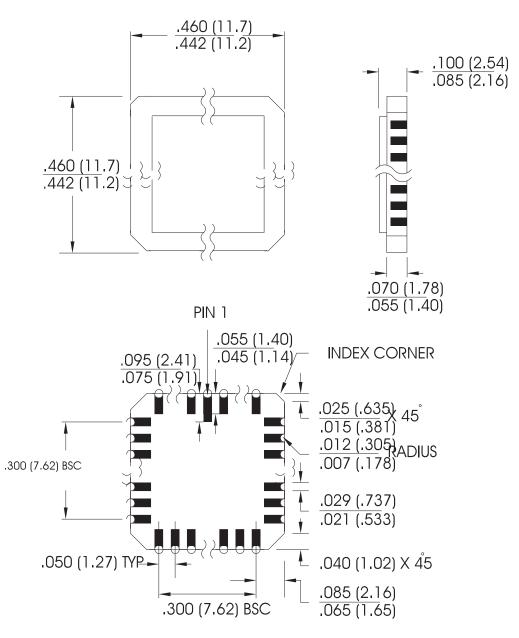
2. Please see DSCC DWG for military parts

16. Packaging Information

24D3

24D3, 24-lead, 0.300"Wide. Non-windowed, Ceramic Dual Inline Parkage (Cerdip) Dimensions in Millimeters and (Inches)* MIL-STD-1835 D-9 CONFIG A (Glass Sealed)

*Controlling dimension: Inches


REV. A 04/11/2001

28L

28L, 28-pad, Non-windowed, Ceramic lid, Leadless Chip Carrier (LCC) Dimensions in Millimeters and (Inches)* MIL-STD-1835 C-4

*Controlling dimension: Inches

17. Revision History

Doc. Rev.	Date	Comments
0250M	07/2010	Removed all commerical and industrial grade leaded part offerings

