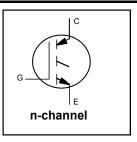
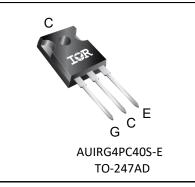


AUIRG4PC40S-E


Insulated Gate Bipolar Transistor

Features

- Standard: Optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-247AD package
- Lead-Free
- Automotive Qualified*


Benefits

- Generation 4 IGBT's offer highest efficiency available
- IGBT's optimized for specified application conditions
- Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's

 V_{CES} = 600V

@ V_{GE} = 15V, IC = 31A

G	С	E
Gate	Collector	Emitter

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
AUIRG4PC40S-E	TO-247AD	Tube	25	AUIRG4PC40S-E

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	60		
I _C @ T _C = 100°C	Continuous Collector Current	31	^	
I _{CM}	Pulse Collector Current ①	120	A	
I _{LM}	Clamped Inductive Load Current @	120		
V _{GE}	Continuous Gate-to-Emitter Voltage	±20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 3	15		
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	65	vv	
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		0	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	С	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Thermal Resistance Junction-to-Case		0.77	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)	0.24		°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)		40	
Wt	Weight	6 (0.21)		g (oz)

*Qualification standard can be found at www.infineon.com/

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_			V _{GE} = 0V, I _C = 250µA
$V_{(BR)ECS}$	Emitter-to-Collector Breakdown Voltage ④	18	_	—	V	$V_{GE} = 0V, I_C = 1.0A$
$\Delta V_{(BR)CES} / \Delta T_J$	Temperature Coeff. of Breakdown Voltage		0.75		V/°C	$V_{GE} = 0V, I_C = 1mA$
		—	1.32	1.5		I _C = 31A, V _{GE} = 15V, T _J = 25°C
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	1.68	—		I _C = 60A, V _{GE} = 15V, See Fig. 2,5
()		—	1.32	—		I _C = 31A, V _{GE} = 15V, T _J = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0	—	6.0	V	V _{CE} = V _{GE} , I _C = 250µA
$\Delta V_{GE(th)} / \Delta T_J$	Threshold Voltage Temperature Coeff.	_	-9.3		mV/°C	V _{CE} = V _{GE} , I _C = 250µA
gfe	Forward Transconductance®	12	21	—	S	V _{CE} = 100V, I _C = 31A
		_		250		V _{GE} = 0V, V _{CE} = 600V
I _{CES}	Collector-to-Emitter Leakage Current			2.0	μA	V _{GE} = 0V, V _{CE} = 10V,T _J = 25°C
				1000		V _{GE} = 0V, V _{CE} = 600V, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_		±100	nA	$V_{GE} = \pm 20V$

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max	Units	Conditions	
Q _g	Total Gate Charge (turn-on)		100	150		I _C = 31A	
Q_{ge}	Gate-to-Emitter Charge (turn-on)	—	14	21	nC	V _{GE} = 15V See Fig.8	
Q_{gc}	Gate-to-Collector Charge (turn-on)	—	34	51		$V_{\rm CC} = 400V$	
t _{d(on)}	Turn-On delay time	—	22	—			
t _r	Rise time	—	18		no	I _C = 31A, V _{CC} = 480V, V _{GE} =15V	
t _{d(off)}	Turn-Off delay time	_	650	980	ns	R _G = 10Ω, T _J = 25°C	
t _f	Fall time		380	570		Energy lagger include "toil"	
Eon	Turn-On Switching Loss	_	0.45	—		Energy losses include "tail"	
E _{off}	Turn-Off Switching Loss	_	6.5	—	mJ	See Fig. 10, 11, 13, 14	
E _{ts}	Total Switching Loss	—	6.95	9.9		-	
t _{d(on)}	Turn-On delay time	—	23	—		I _C = 31A, V _{CC} = 480V, V _{GE} =15V	
t _r	Rise time	—	21	—		R _G = 10Ω, T _J = 150°C	
t _{d(off)}	Turn-Off delay time		1000	—	ns	Energy losses include "tail"	
t _f	Fall time		940	_			
E _{ts}	Total Switching Loss		12	—	mJ	See Fig. 13, 14	
L _E	Internal Emitter Inductance		13	—	nH	Measured 5mm from package	
C _{ies}	Input Capacitance		2200	_		V _{GE} = 0V	
C _{oes}	Output Capacitance		140	_	pF	V _{CC} = 30V See Fig. 7	
C _{res}	Reverse Transfer Capacitance	_	26			f = 1.0Mhz	

Notes:

- ① Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- $@~V_{CC}$ = 80%(V_{CES}), V_{GE} = 20V, L = 10 $\mu H,$ R_G = 10 $\Omega,$ (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.
- \bigcirc Pulse width 5.0µs, single shot.

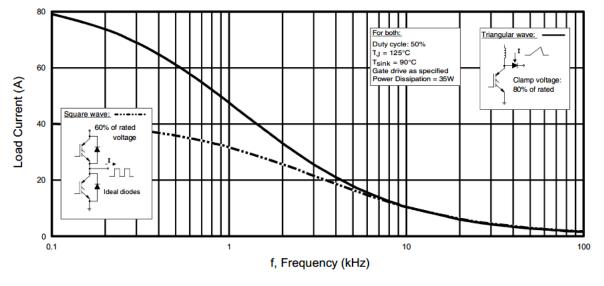


Fig. 1 - Typical Load Current vs. Frequency (For square wave, $I=I_{PK}$)

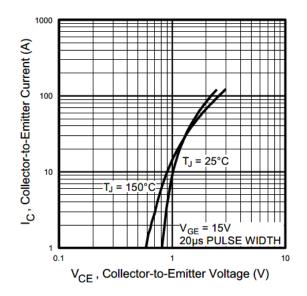


Fig. 2 - Typical Output Characteristics

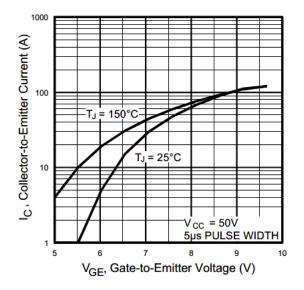
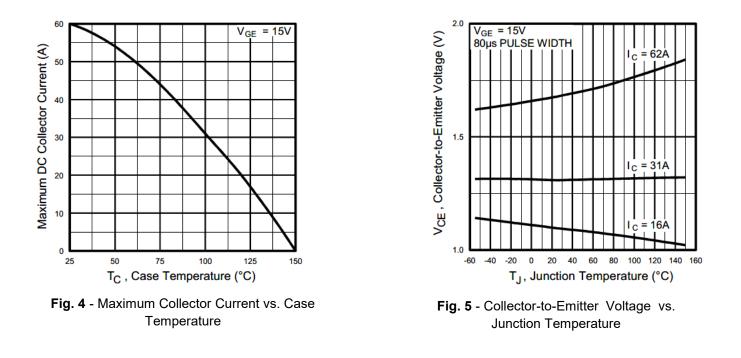



Fig. 3 - Typical Transfer Characteristics

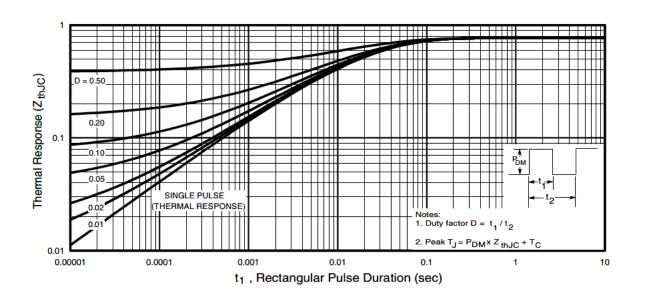


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

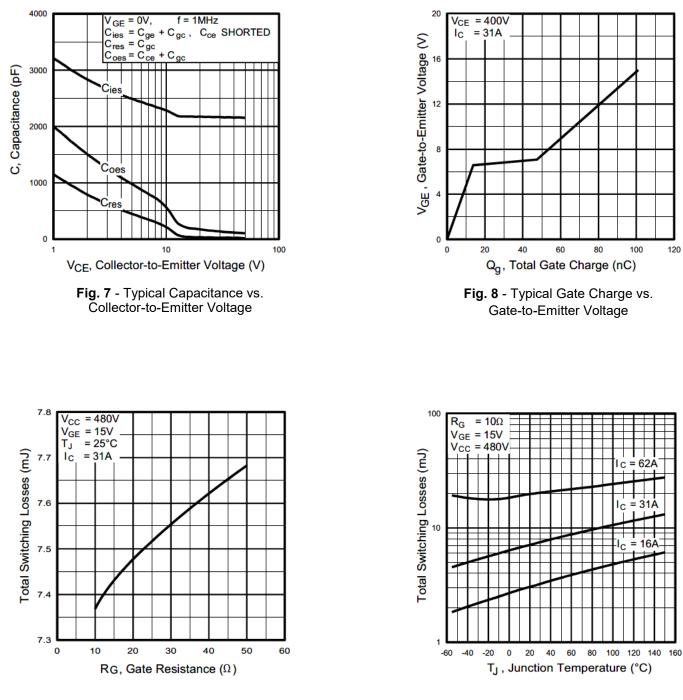


Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

1000

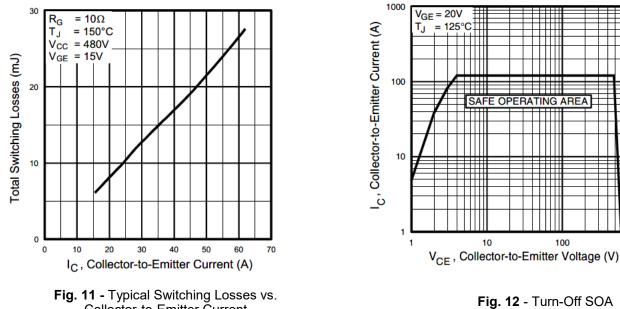
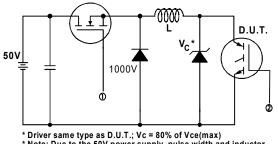



Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Driver same type as D.U.T.; Vc = 80% of Vce(max)
Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.

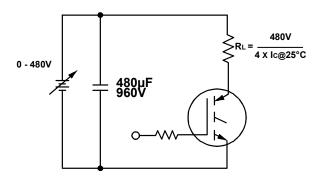


Fig. 13b - Pulsed Collector Current Test Circuit

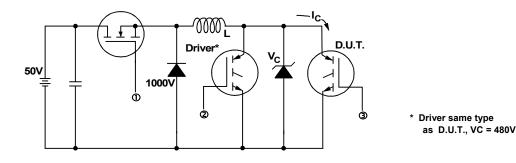


Fig. 14a - Switching Loss Test Circuit

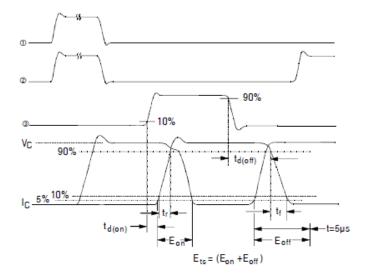
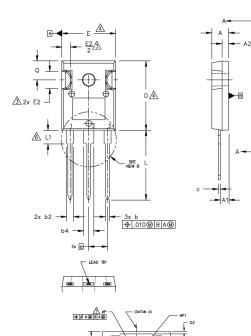



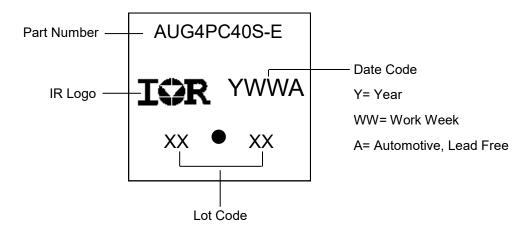
Fig. 14b - Switching Loss Waveforms

TO-247AD Package Outline Dimensions are shown in millimeters (inches)

A €1 ⊕.010 ⊕ B A ⊕

VIEW A-A

VIEW B


NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES.
- CONTOUR OF SLOT OPTIONAL.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
 - PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- /7. #P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD. 8.

		DIMEN]		
SYMBOL	INC	IES	MILLIMETERS			
	MIN.	MAX.	MIN.	MAX.	NOTES	
SYMBOL A A1 A2 b1 b2 b3 b4 b5 c c1 D1 D1 D2 E E1 E1 E2 e Øk L1 ØP ØP1		MAX. .203 .102 .084 .051 .050 .094 .092 .135 .133 .035 .034 .795 - .053 .625 - .216 BSC		MAX. 5.13 2.59 2.13 1.30 1.28 2.39 2.34 3.43 3.38 0.88 0.84 20.20 - 1.35 15.87 - 5.49 BSC	NOTES 4 5 4	LEAD ASSIGNMENTS HEXFET 1 GATE 2 DRAIN 3 SOURCE 4 DRAIN IGBTs, COPACK 1 GATE 2 COLLECTOR 3 EMITTER 4 COLLECTOR DIODES 1 ANODE/OPEN 2 CATHODE 3 ANODE
ØP1 Q	.209	.291	5.31	7.39 5.69		
S	.217	820	5.51 BSC			

TO-247AD Part Marking Information

SECTION C-C. D-D. E-E

TO-247AD package is not recommended for Surface Mount Application.