Wideband, Positive Gain Slope

Monolithic Amplifier

AVA-183P+

 50Ω 0.5 to 18 GHz,

CASE STYLE: DQ1225

The Big Deal

- Ultra-wideband, 0.5 to 18 GHz
- Positive gain slope
- Single positive supply voltage

Product Overview

The AVA-183P+ is a InGaAs E-PHEMT based wideband, positive gain slope MMIC amplifier applications. This design operates on a single 5V supply, is well matched for 50Ω and comes in a tiny, low profile package (3 x 3 x 0.89mm), accommodating dense circuit board layouts.

Key Features

to y i outure o				
Feature	Advantages			
Positive Gain Slope vs. Frequency +0.13 dB/GHz (0.5-10 GHz) +0.25 dB/GHz (10-18 GHz)	Useful for compesating negative gain slope of most wideband microwave components and eliminating the need for equalization			
Positive Supply Voltage	Simplifies external circuit by eliminating need for negative voltage and sequencing			
3 x 3mm, 12-lead MCLP package	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.			

Wideband, Positive Gain Slope

Monolithic Amplifier

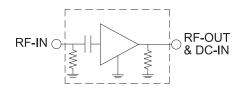
0.5-18 GHz

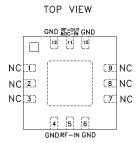
Product Features

- Wideband, 0.5 to 18 GHz
- Positive Gain Slope
- Single Positive Supply Voltage

Typical Applications

- WiFi
- WLAN
- LTE
- WiMAX
- C-band Satcom


+RoHS Compliant


The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

The AVA-183P+ is a InGaAs E-PHEMT based wideband, positive gain slope MMIC amplifier applications. This design operates on a single 5V supply, is well matched for 50Ω and comes in a tiny, low profile package (3 x 3 x 0.89mm), accommodating dense circuit board layouts.

simplified schematic & pad description

Function	Pad Number	Description (See Figure 1)	
RF-IN	5	Connects to RF input via external DC blocking capacitor	
RF-OUT & DC-IN	11	Connects to RF output & V _{DD} via external bias-tee	
Ground	4,6,10,12 & Paddle	Connects to ground	
No Connection	1-3, 7-9	Not used internally. Connected to ground on test board	

Electrical Specifications¹ at 25°C and 5V, unless noted

Parameter	Condition (GHz)	Min.	Тур.	Max.	Unit
Frequency Range		0.5		18	GHz
Gain	0.5	6.1	6.8	7.5	dB
	5	_	7.5	_	
	10	7.3	8.1	8.9	
	15	_	9.8	_	
	18	9.2	10.8	11.9	
Gain Slope	0.5 - 10	_	0.13	_	dB/GHz
	10 -18	_	0.25	_	
Input Return Loss	0.5		15		dB
	5		13		
	10		10		
	15		23		
	18		14		
Output Return Loss	0.5		11		dB
	5		8		
	10		7		
	15		9		
	18		19		
Output Power at 1dB Compression	0.5		10.9		dB
	5		10.6		
	10		11.7		
	15		12.3		
	18		11.6		
OIP3	0.5		22.8		dBm
	5		21.4		
	10		21.5		
	15		20.6		
	18		19.1		
Noise Figure	0.5		7.5		dBm
	5		5.3		
	10		4.8		
	15		4.6		
	18		5.0		
Device Operating Voltage(VDD)		4.75	5	5.25	V
Device Operating Current (IDD)		_	46.3	54	mA
Device Current Variation vs. Temperature ²			-168.13		μΑ/°C
Device Current Variation vs. Voltage ³			0.0085		mA/mV

Measured on Mini-Circuits Characterization test board TB-AVA-183P+. See Characterization Test Circuit (Fig. 1)
Current variation vs temperature=(Current at 100°C-Current at -55°C)/155°C
Current variation vs Voltage=(Current at 5.25V - Current at 4.75V)/(5.25V-4.75V)

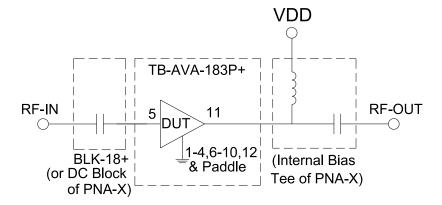
Absolute Maximum Ratings⁴

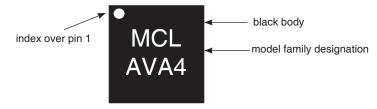
Parameter	Ratings		
Operating Temperature (ground lead)	-55°C to 100°C		
Storage Temperature	-65°C to 150°C		
Junction Temperature	161°C		
Total Power Dissipation	0.46W ⁶		
Input Power (CW), Vd=5V ⁵	+22 dBm (5 minutes max.) +13 dBm (continuous)		

Permanent damage may occur if any of these limits are exceeded.
Electrical maximum ratings are not intended for continuous normal operation.
Measured on Mini-Circuits test board, TB-AVA-183P+

^{6.} Derates linearly to 0.24W at 100°C

Recommended Characterization Test Circuit




Fig 1. Characterization Test Circuit

Note: This block diagram is used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-AVA-183P+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -3 dBm/tone at output.

Product Marking

Marking may contain other features or characters for internal lot control