

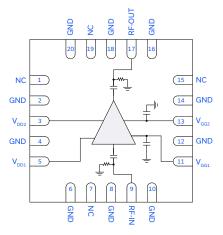
MMIC SURFACE MOUNT Wideband Amplifier 500

AVA-2183+

Mini-Circuits

2 to 20 GHz

Excellent Gain Flatness


THE BIG DEAL

- Wideband 2 to 20 GHz
- Flat Gain, Typ. 16 ±1 dB
- P1dB, Typ. +19 dBm
- OIP3, Typ. +25 dBm
- 4x4mm 20 Lead QFN-Style Package

Generic photo used for illustration purposes only

FUNCTIONAL DIAGRAM

APPLICATIONS

- 5G MIMO and Back Haul Radio Systems
- Satellite Communications
- Test and Measurement Equipment
- Radar, EW, and ECM Defense Systems

PRODUCT OVERVIEW

The AVA-2183+ is a GaAs pHEMT MMIC Amplifier that operates from 2 to 20 GHz. At 10 GHz the amplifier provides typical performance of 16.4 dB Gain, 5.2 dB Noise Figure, +19.3 dBm P1dB, and +24.7 dBm OIP3 from a +4V supply drawing 210 mA. The AVA-2183+ MMIC amplifier is housed in an industry standard 4x4mm 20-lead QFN-style package. With the RF ports internally matched to 50Ω this amplifier enables easy integration into microwave systems.

KEY FEATURES

Features	Advantages
Wideband: 2 to 20 GHz • Gain, Typ. 16 dB	Suitable for a variety of applications from wideband test and measurement equipment, and defense systems as well as narrowband telecommunications and satellite communications.
Good P1dB & OIP3 • P1dB, Typ. +19 dBm • OIP3, Typ. +25 dBm	Suitable as a linear gain block or as a LO driver for mixers in transmitter or receiver lineups.
Good Input and Output Return Loss	Internally matched to 50Ω , this eliminates the need for external matching components making the device easy to integrate.
4x4mm 20-Lead QFN-style package	Small footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.

REV. OR ECO-017253 AVA-2183+ MCL NY 230324

Wideband Amplifier

Mini-Circuits

2 to 20 GHz

50Ω

Excellent Gain Flatness

ELECTRICAL SPECIFICATIONS¹ AT 25°C, Z₀ = 50 Ω , V_{DD} = +4V, I_{DD} = 210mA, UNLESS NOTED OTHERWISE

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		2		20	GHz
	2	12.9	15.0		
	5	14.2	15.6		
Gain	10	15.7	16.4		dB
	15	15.1	16.2		
	20	13.7	15.9		
	2		11.4		
	5		15.6		
Input Return Loss	10		14.8		dB
	15		14.6		
	20		16.4		
	2		18.9		
	5		20		
Output Return Loss	10		20		dB
	15		19.8		
	20		16.3		
Isolation	2-20		60.8		dB
	2		+18.4		
	5		+18.9		
Output Power at 1 dB Compression (P1dB)	10		+19.3		dBm
	15		+18.4		
	20		+16.9		
	2		+27.9		
	5		+26.3		
Output Third-Order Intercept Point (P _{out} = 0dBm/Tone)	10		+24.7		dBm
	15		+22.9		
	20		+20.0		
	2		6.7		
	5		6.3		
Noise Figure	10		5.2		dB
	15		4.5		
	20		5.1		
Device Operating Voltage (V _{DD})		+3.75	+4	+4.25	V
Device Operating Current (I _{DD}) ²			210		mA
Gate Voltage (V _{GG}) ³			-0.52		V
Gate Current (I _{GG})			-0.2		μA
Device Current Variation Vs. Temperature ⁴			0.48		µA/°C
Device Current Variation Vs. Voltage⁵			0.005		mA/mV

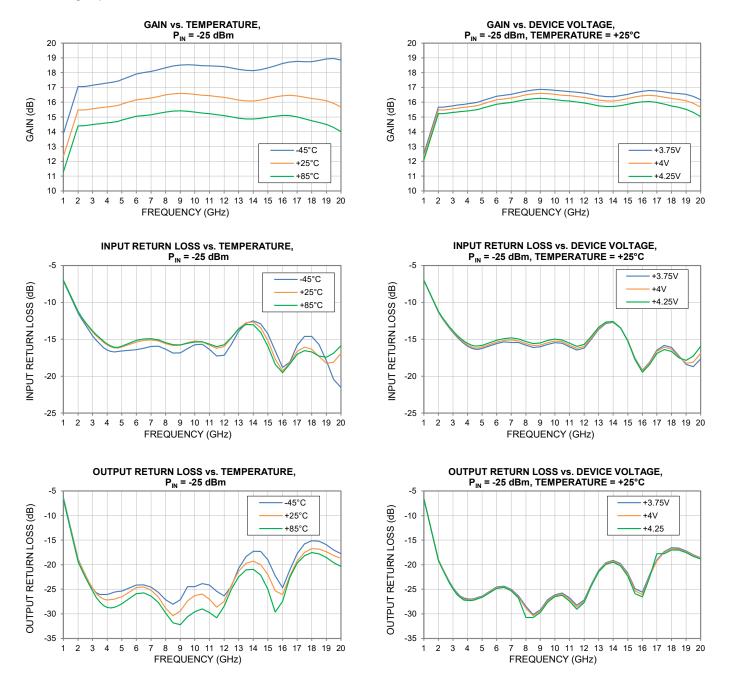
1. Tested in Mini-Circuits Characterization Test/Evaluation Board TB-AVA-2183C+. See Figure 2. De-embedded to the device reference plane.

2. Current at P_{IN} = -25 dBm. Increases to 230 mA at P1dB.

3. Typical Gate Voltage for when I_{DD} = 210 mA. V_{GG} must be adjusted so that I_{DD} = 210 mA.

4. ((Current at Tmax°C - Current at Tmin°C))/(Tmax °C -Tmin °C)

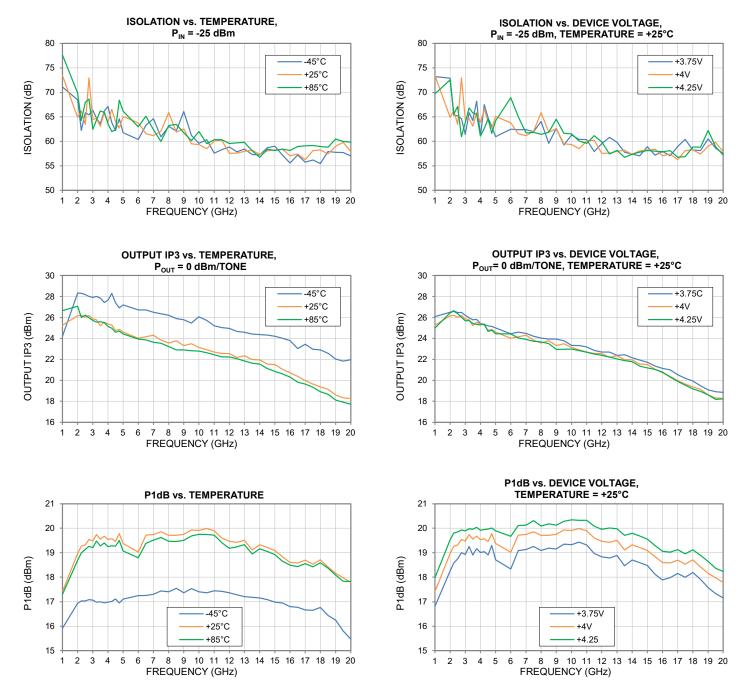
5. (Current at Nominal V + Δ V in mA) - (Current at Nominal V - Δ V mA)/(2 Δ V mV)


Mini-Circuits

2 to 20 GHz

TYPICAL PERFORMANCE GRAPHS

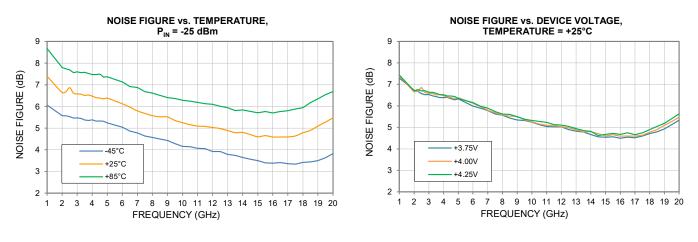
All data taken was at nominal conditions V_{DD} = +4V and I_{DD} = 210 mA unless noted otherwise. For over temperature data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each temperature specified. For over voltage data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each voltage specified.



2 to 20 GHz

TYPICAL PERFORMANCE GRAPHS

All data taken was at nominal conditions V_{DD} = +4V and I_{DD} = 210 mA unless noted otherwise. For over temperature data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each temperature specified. For over voltage data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each voltage specified.



2 to 20 GHz

TYPICAL PERFORMANCE GRAPHS

All data taken was at nominal conditions V_{DD} = +4V and I_{DD} = 210 mA unless noted otherwise. For over temperature data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each temperature specified. For over voltage data, V_{GG} is adjusted to achieve I_{DD} = 210 mA at each voltage specified.

Wideband Amplifier

AVA-2183+

Mini-Circuits

2 to 20 GHz 50Ω

Excellent Gain Flatness

ABSOLUTE MAXIMUM RATINGS⁶

Parameter	Ratings		
Operating Temperature	-45°C to +85°C		
Storage Temperature	-65°C to +150°C		
Total Power Dissipation	1.7 W		
Junction Temperature ⁷	+175°C		
RF Input Power (CW)	+23 dBm (5 minute max) +14 dBm (continuous)		
DC Voltage on RF-OUT & V _{DD}	+7V		
DC Voltage on V_{GG}	-1.5 V to -0.2 V		
Current I _{GG}	-5mA to 0mA		
Current I _{DD}	320mA		

6. Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

7. Peak temperature on top of the die.

THERMAL RESISTANCE

Parameter	Ratings		
Thermal Resistance $(\Theta_{jc})^8$	38.8 °C/W		

8. Θ_{ic} = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

	Class Voltage Range		Reference Standard
Human Body Model (HBM)	1B	500 to <1000V	ANSI/ESDA/JEDEC JS-001-2017
Charged Device Model (CDM)	C3	1000V	JESD22-C101F

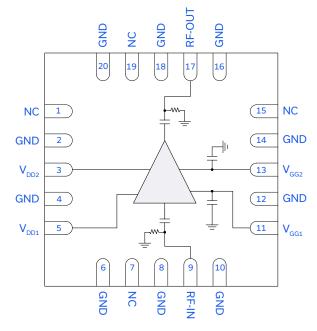
ESD HANDLING PRECAUTION: This device is designed to be Class 1B for HBM.Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

Moisture Sensitivity: MSL3 in accordance with IPC/JEDEC J-STD-020E/JEDEC J-STD-033C

Mini-Circuits

Wideband Amplifier

AVA-2183+


Mini-Circuits

50Ω 2 to 20 GHz Exc

Excellent Gain Flatness

PAD DESCRIPTION

FUNCTIONAL DIAGRAM

Function	Pad Number	Description (Refer to Figure 2)
RF-IN	9	RF-IN Pad connects to RF-Input port. DUT includes an integrated shunt resistor for ESD protection and a DC blocking capacitor.
RF-OUT	17	RF-OUT Pad connects to RF-Output port. DUT includes an integrated shunt resistor for ESD protection and a DC blocking capacitor.
V_{DD1}	5	DC Input Pad connects to voltage input port $V_{\mbox{\tiny DD1}}.$
V_{DD2}	3	DC Input Pad connects to voltage input port $V_{\mbox{\tiny DD2}}.$
V_{GG1}	11	DC Input Pad connects to voltage input port $V_{\rm GG1}.$ DUT includes an integrated shunt capacitor.
V_{GG2}	13	DC Input Pad connects to voltage input port $V_{\rm GG2}.$ DUT includes an integrated shunt capacitor.
GND	2,4,6,8,10, 12,14,16,18, 20, & Paddle	Connects to ground.
NC	1,7,15, &19	Not used internally. Connected to ground on test board.

Figure 1. AVA-2183+ Functional Diagram

Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using PNA-X N5247B Microwave Network Analyzer.

Conditions:

- 1. Gain and Return Loss: $\mathsf{P}_{\mathsf{IN}}\text{=}$ -25 dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output 3. V_{DD} = +4V, I_{DD} = 210 mA

Caution: Permanent damage to the device will occur if the Power ON and Power OFF Sequences are not followed.

Power ON Sequence:

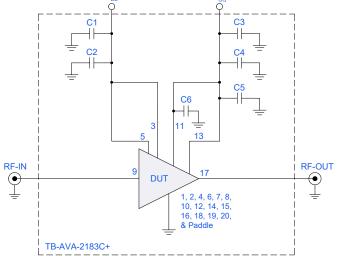
1) Set V_{GG} = -1.3V. Apply V_{GG} .

2) Set V_{DD} = +4V. Apply V_{DD} .

- 3) Increase V_{GG} to obtain desired I_{DD} as shown in specification table.
- 4) Apply RF Signal.

Power OFF Sequence:

1) Turn off RF Signal.

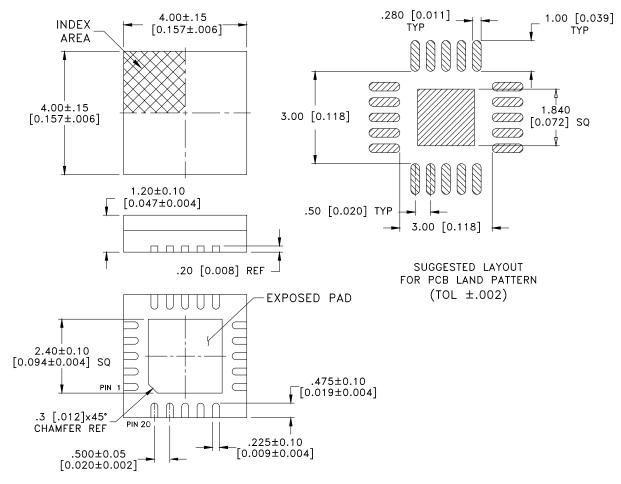

2) Adjust V_{GG} down to -1.3V.

3) Turn off V_{DD}

4) Turn off V_{GG}

Component	Vendor	Vendor P/N	Value	Size
C1, C3	Samsung	CL31B106KBHNNNE	10µF	1206
C2, C4	AVX	06035C104KAT2A	0.1µF	0603
C5, C6	Murata	GRM1885C1H101GA01D	100pF	0603

CHARACTERIZATION TEST BOARD


Wideband Amplifier

Mini-Circuits

50Ω 2 to 20 GHz E

Excellent Gain Flatness

CASE STYLE DRAWING

Weight: 0.1 grams Dimensions are in inches [mm].

Figure 3. DG1847-1 Case Style Drawing

Marking may contain other features or characters for internal lot control

Figure 4. AVA-2183+ Product Marking