

BAW Filter WLAN 2G; Bluetooth

Series/type:	B9634
Ordering code:	B39242B9634P810
Date:	May 30, 2016
Version:	2.1

© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

②TDK

SAW components	B9634
BAW Filter	2442 MHz

Data sheet

Table of contents

1 Application	3
2 Features	3
3 Package	4
4 Pin configuration	4
5 Matching circuit	5
6 Characteristics	6
7 Maximum ratings	8
8 Transmission coefficient	9
9 Reflection coefficients	10
10 Packing material	11
11 Marking.	14
12 Soldering profile	16
13 Annotations.	17
14 Cautions and warnings.	18
Important notes	19

BAW Filter

Data sheet

1 Application

- Low-loss BAW RF single filter for Bluetooth/WLAN systems
- Low insertion loss
- High power durability
- Usable pass band 79.0 MHz
- Industrial qualification

2 Features

- Package size 1.4±0.1 mm × 1.1±0.1 mm
- Package height 0.45 mm (max.)
- Approximate weight 5 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)

Figure 1: Picture of component with example of product marking.

B9634

B9634

2442 MHz

SAW components

BAW Filter

Data sheet

3 Package

BOTTOM VIEW

Pad and pitch tolerance ±0.05

SIDE VIEW

1) Marking for pad number 1

2) Example of encoded lot number

3) Example of encoded filter type number

4 Pin configuration

- 1 Input
- 4 Output
- 2, Ground 3, 5

Figure 3: Schematic of matching circuit.

BAW Filter

Data sheet

6 Characteristics

Temperature range for specification
Input terminating impedance
Output terminating impedance

 T_{spec} = -10 °C ... +85 °C

 Z_{IN} = 50 Ω with par. 10 nH¹)

 Z_{OUT} = 50 Ω with ser. 1.2 nH¹)

Characteristics	min. for T _{SPEC}	typ. @+25 °C	max. for $T_{_{\rm SPEC}}$	
Center frequency f _c	—	2442		MHz
Maximum insertion attenuation α _{max}				
Bluetooth 2401.5 2480.5 MHz	_	1.5 ²⁾	2.1 ²⁾	dB
Channel 1 2403.1 2420.9 MHz	_	1.9 ³⁾	2.5 ³⁾	dB
Channel 2 2408.1 2425.9 MHz	—	1.6 ³⁾	2.0 ³⁾	dB
Channel 3-11 2413.1 2470.9 MHz	—	1.4 ³⁾	1.8 ³⁾	dB
Channel 12 2458.1 2475.9 MHz	—	1.5 ³⁾	2.2 ³⁾	dB
Channel 13 2463.1 2480.9 MHz	—	1.8 ³⁾	2.7 ³⁾	dB
Amplitude ripple (p-p)				
Channel 1 2403.1 2420.9 MHz	—	1.2	3.6	dB
Channel 2 2408.1 2425.9 MHz	—	0.7	2.0	dB
Channel 3-11 2413.1 2470.9 MHz	—	0.6	1.6	dB
Channel 12 2458.1 2475.9 MHz	—	0.6	2.0	dB
Channel 13 2463.1 2480.9 MHz	—	1.4	5.7	dB
Maximum VSWR VSWR				
@ input port 2403.1 2475.9 MHz	_	1.5	2.3	
2403.1 2480.9 MHz	_	1.8	2.5	
@ output port 2403.1 2480.9 MHz	_	1.6	2.3	
Minimum attenuation $\alpha_{_{min}}$				
10 800 MHz	40	44	—	dB
800 1805 MHz	32	37	—	dB
1805 2170 MHz	35	38	—	dB
2170 2300 MHz	35	45	—	dB
2300 2360 MHz	38	41	—	dB
2360 2365 MHz	384)	43 ⁴⁾	—	dB
2365 2370 MHz	40 ⁴⁾	45 ⁴⁾	—	dB
2370 2375 MHz	35 ⁴⁾	48 ⁴⁾	—	dB
2375 2380 MHz	15 ⁴⁾	50 ⁴⁾	—	dB
2377.5 2382.5 MHz	10 ⁴⁾	48 ⁴⁾	—	dB
2496 2501 MHz	13 ⁴⁾	54 ⁴⁾	—	dB
2500 2505 MHz	34 ^{4),5)}	65 ⁴⁾	—	dB
2500 2505 MHz	434),6)	65 ⁴⁾	—	dB
2505 2570 MHz	45	52	—	dB
2570 2620 MHz	42	48	—	dB
2620 2690 MHz	40	47	—	dB

BAW Filter

Data sheet

Characteristics			min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	
	2690 3400	MHz	28	38	_	dB
	3400 3800	MHz	28	33	_	dB
	3800 4800	MHz	20	25	_	dB
	4800 5150	MHz	20	29	_	dB
	5150 5850	MHz	25	29	_	dB

1)

See Sec. Matching circuit (p. 5). Averaged values over whole pass band due to frequency hopping in Bluetooth mode. 2)

3) Averaged value within each Wifi channel width of 17.8 MHz.

Averaged values of linear S-parameter over any 5MHz. Valid for temperature $T_{\text{SPEC}} = -10 \text{ °C...}+25 \text{ °C.}$ Valid for temperature $T_{\text{SPEC}} = +25 \text{ °C...}+85 \text{ °C.}$ 4)

5)

6)

B9634

BAW Filter

B9634

2442 MHz

Data sheet

7 Maximum ratings

Storage temperature	T _{STG} = −40 °C +90 °C	
DC voltage	$V_{\rm DC} = 0 V (max.)$	
ESD voltage	$V_{\rm ESD}$ = 50 V (max.) ¹⁾	
Input power	P _{IN}	
@ input port: 2401.5 2480.5 MHz	29.5 dBm	Source and load impedance 50Ω . LTE 5MHz downlink. T=55°C, 100.000h. ²⁾
@ input port: other frequency range(s)	10 dBm	Source and load impedance 50Ω .
Operating lifetime with output power at antenna	P _{OUT}	
@ output port: 2401.5 2480.5 MHz	t.b.d. dBm ³⁾	Continuous wave T= 55 °C, 100khrs. ⁴⁾

¹⁾ According to JESD22-A115A (machine model), 1 negative and 1 positive pulses.

²⁾ Time to failure (TTF) according to accelerated power durability tests, and wear out models.

³⁾ Target is 24 dBm.

⁴⁾ According to accelerated high temperature operating life (HOTL) test.

BAW Filter

Data sheet

8 Transmission coefficient

Figure 4: Attenuation.

B9634

BAW Filter

Data sheet

Reflection coefficients 9

B9634

B9634

2442 MHz

SAW components

BAW Filter

Data sheet

10 Packing material

10.1 Tape

User direction of unreeling

Figure 7: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A_0	1.27±0.05 mm
B ₀	1.57±0.05 mm
D_0	1.5+0.1/-0 mm
D_1	0.5±0.1 mm
E1	1.75±0.1 mm

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.62±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

 Table 1: Tape dimensions.

10.2 Reel with diameter of 180 mm

Figure 8: Drawing of reel (first-angle projection) with diameter of 180 mm.

B9634

2442 MHz

SAW components

BAW Filter

Data sheet

10.3 Reel with diameter of 330 mm

TDK

Figure 13: Drawing of folding box for reel with diameter of 330 mm.

11 Marking

Type number:

Products are marked with product type number and lot number encoded according to Table 2:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3 digit m	e arking.	.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding type number marking on device 16J 1 x 32 ² + 6 x 32 ¹ + 18 (=J) x 32 ⁰ The BASE32 code for product type B9634 is 9D2.	=> =	in decimal code. 1234 1234
■ Lot number:		
The last 5 digits of the lot number, are encoded based on a special BASE47 code into a	e 3 digit markin	.g., 12345 , g.
Example of decoding lot number marking on device 5UY 5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=> =	in decimal code. 12345 12345

公TDK

SAW components

BAW Filter

Data sheet

Adopted BASE32 code for type number				
Decimal	Base32	Decimal	Base32	
value	code	value	code	
0	0	16	G	
1	1	17	Н	
2	2	18	J	
3	3	19	K	
4	4	20	М	
5	5	21	N	
6	6	22	Р	
7	7	23	Q	
8	8	24	R	
9	9	25	S	
10	А	26	Т	
11	В	27	V	
12	С	28	W	
13	D	29	Х	
14	E	30	Y	
15	F	31	Z	

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	А	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	K	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

 Table 2: Lists for encoding and decoding of marking.

BAW Filter

Data sheet

12 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 14: Recommended reflow profile for convection and infrared soldering – lead-free solder.

B9634

SAW components

BAW Filter

Data sheet

13 Annotations

13.1 Matching coils

See TDK inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>.

13.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

13.4 Ordering codes and packing units

Ordering code	Packing unit
B39242B9634P810	5000 pcs

 Table 4: Ordering codes and packing units.

B9634

BAW Filter

Data sheet

14 Cautions and warnings

14.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.epcos.com/orderingcodes</u>.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

Projection method

Unless otherwise specified first-angle projection is applied.

B9634