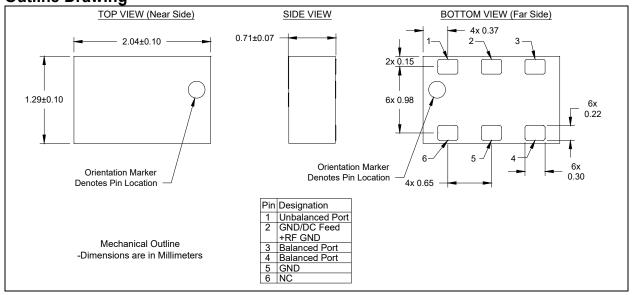


Ultra Low Profile 0805 Balun 50Ω to 200Ω Balanced

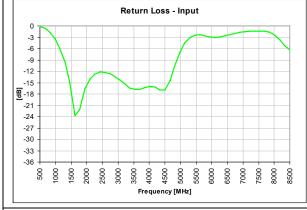
Description:

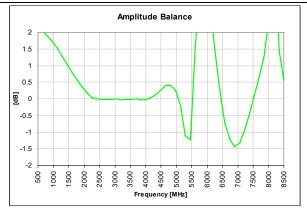
The BD2425J50200AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on next generation wireless chipsets in an easy to use surface mount package covering the GSM frequencies. The BD2425J50200AHF is ideal for high volume manufacturing and is higher performance than traditional ceramic and lumped element baluns. The BD2425J50200AHF has an unbalanced port impedance of 50Ω and a 200Ω balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern semiconductors. The output ports have equal amplitude (-3dB) with 180 degree phase differential. The BD2425J50200AHF is available on tape and reel for pick and place high volume manufacturing.

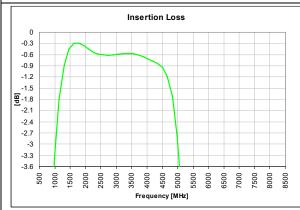

Detailed Electrical Specifications:

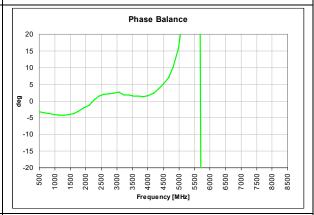
Specifications subject to change without notice.

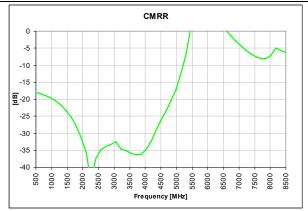
		ROOM (25°C)			
<u>Features:</u>	Parameter	Min.	Тур.	Max	Unit
• 2400 – 2500 MHz	Frequency	2400		2500	MHz
0.7mm Height Profile 52.0 hrs. 42.2 Album	Unbalanced Port Impedance		50		Ω
 50 Ohm to 2 x 100 Ohm 802.11 b+g +n Compliant 	Balanced Port Impedance		200		Ω
Low Insertion Loss	Return Loss	9.5	12.2		dB
Input to Output DC	Insertion Loss*		0.6	0.8	dB
Isolation	Amplitude Balance		0.1	0.5	dB
Surface Mountable	Phase Balance		2	6	Degrees
Tape & ReelNon-conductive Surface	CMRR		37		dB
RoHS Compliant	Power Handling @85C			2	Watts
Trong compliant	Power Handling @105C			1.2	Watts
	Operating Temperature	-55		+105	°C


^{*} Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at +85 °C).

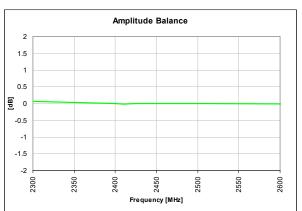

Outline Drawing

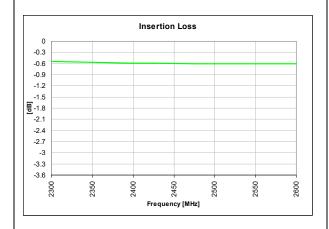


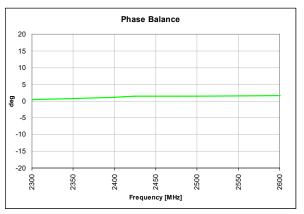


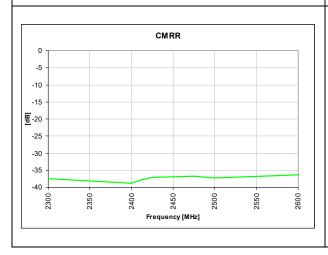

Typical Broadband Performance: 0 GHz. to 8.5 GHz.

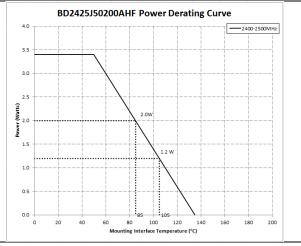




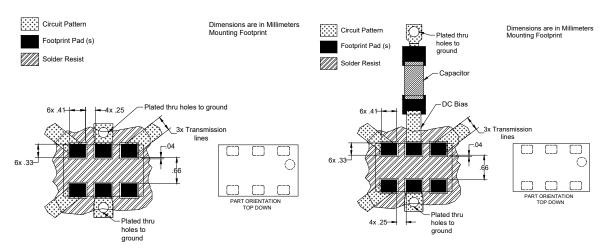





Typical Performance: 2300 MHz. to 2600 MHz.



Mounting Configuration:


In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from organic PTFE based composites which possess excellent electrical and mechanical stability. Xinger components are compliant to a variety of ROHS and Green standards and ready for Pb-free soldering processes. Pads are Gold plated with a Nickel barrier.

An example of the PCB footprint used in the testing of these parts is shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

No Bias Footprint

DC Bias Footprint

