BD675G, BD675AG, BD677G, BD677AG, BD679G, BD679AG, BD681G

Plastic Medium-Power Silicon NPN Darlingtons

This series of plastic, medium-power silicon NPN Darlington transistors can be used as output devices in complementary general-purpose amplifier applications.

Features

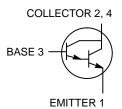
- High DC Current Gain
- Monolithic Construction
- Complementary to BD676, 676A, 678, 678A, 680, 680A, 682
- BD677, 677A, 679, 679A are Equivalent to MJE 800, 801, 802, 803
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage BD675G, BD675AG BD677G, BD677AG BD679G, BD679AG BD681G	V _{CEO}	45 60 80 100	Vdc
Collector–Base Voltage BD675G, BD675AG BD677G, BD677AG BD679G, BD679AG BD681G	V _{CBO}	45 60 80 100	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	I _C	4.0	Adc
Base Current	I _B	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 0.32	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.13	°C/W

ON Semiconductor®

http://onsemi.com

4.0 AMPERES POWER TRANSISTORS NPN SILICON 60, 80, 100 VOLTS, 40 WATTS

MARKING DIAGRAMS

BD6xx/BD6xxA = Device Code

x = 75, 77, 79, 81

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD675G, BD675AG, BD677G, BD677AG, BD679G, BD679AG, BD681G

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage, (Note 1) (I _C = 50 mAdc, I _B = 0) BD675G, BD675AG BD677G, BD677AG BD679G, BD679AG BD681G	BV _{CEO}	45 60 80 100	- - - -	Vdc
Collector Cutoff Current $(V_{CE} = Half Rated V_{CEO}, I_B = 0)$	I _{CEO}	_	500	μAdc
Collector Cutoff Current $(V_{CB} = Rated \ BV_{CEO}, \ I_E = 0)$ $(V_{CB} = Rated \ BV_{CEO}, \ I_E = 0, \ T_C = 100'C)$	I _{CBO}	- -	0.2 2.0	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS				
DC Currert Gain, (Note 1) (I _C = 1.5 Adc,V _{CE} = 3.0 Vdc) BD675G, BD677G, BD679G, BD681G (I _C = 2.0 Adc, V _{CE} = 3.0 Vdc) BD675AG, BD677AG, BD679AG	h _{FE}	750 750		_
Collector–Emitter Saturation Voltage, (Note 1) ($I_C = 1.5$ Adc, $I_B = 30$ mAdc) BD677G, BD679G, BD681G ($I_C = 2.0$ Adc, $I_B = 40$ mAdc) BD675AG, BD677AG, BD679AG	V _{CE(sat)}	-	2.5 2.8	Vdc
Base-Emitter On Voltage, (Note 1) (I _C = 1.5 Adc, V _{CE} = 3.0 Vdc) BD677G, BD679G, BD681G (I _C = 2.0 Adc, V _{CE} = 3 0 Vdc) BD675AG, BD677AG, BD679AG	V _{BE(on)}	-	2.5 2.5	Vdc
DYNAMIC CHARACTERISTICS			•	•
Small Signal Current Gain (I _C = 1.5 Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)	h _{fe}	1.0		_

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

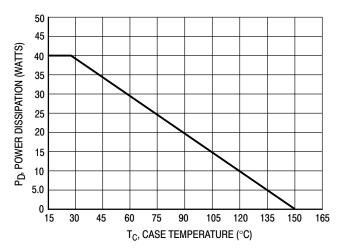


Figure 1. Power Temperature Derating

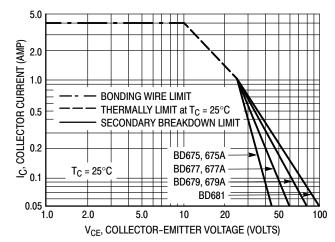


Figure 2. DC Safe Operating Area

BD675G, BD675AG, BD677G, BD677AG, BD679G, BD679AG, BD681G

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

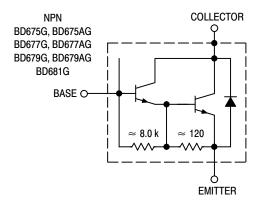
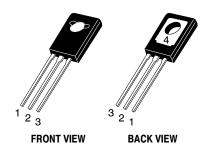
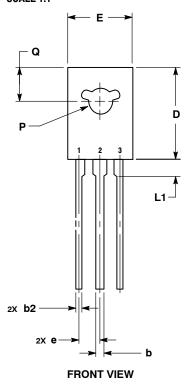
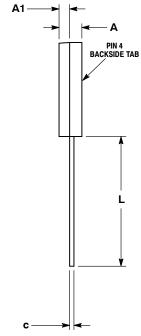



Figure 3. Darlington Circuit Schematic

ORDERING INFORMATION

Device	Package	Shipping
BD675G	TO-225 (Pb-Free)	500 Units / Box
BD675AG	TO-225 (Pb-Free)	500 Units / Box
BD677G	TO-225 (Pb-Free)	500 Units / Box
BD677AG	TO-225 (Pb-Free)	500 Units / Box
BD679G	TO-225 (Pb-Free)	500 Units / Box
BD679AG	TO-225 (Pb-Free)	500 Units / Box
BD681G	TO-225 (Pb-Free)	500 Units / Box

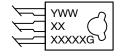

MECHANICAL CASE OUTLINE



TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1



SIDE VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.40	3.00			
A1	1.00	1.50			
b	0.60	0.90			
b2	0.51	0.88			
С	0.39	0.63			
D	10.60	11.10			
E	7.40	7.80			
е	2.04	2.54			
L	14.50	16.63			
L1	1.27	2.54			
P	2.90	3.30			
Q	3.80	4.20			

GENERIC MARKING DIAGRAM*

= Year WW = Work Week

XXXXX = Device Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

,	EMITTER COLLECTOR BASE	2., 4.	CATHODE ANODE GATE	2., 4.	BASE COLLECTOR EMITTER	2., 4.	ANODE 1 ANODE 2 GATE	,	MT 1 MT 2 GATE
	CATHODE GATE	STYLE 7: PIN 1.			SOURCE GATE	STYLE 9: PIN 1. 2., 4.	GATE	STYLE 10: PIN 1. 2., 4.	SOURCE
	ANODE		MT 2		DRAIN		SOURCE		GATE

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Reprinted versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-225		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.