onsemi

N-Channel JFET RF Amplifier

BF256B

Features

- This Device is Designed for VHF / UHF Amplifiers
- Sourced from Process 50
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

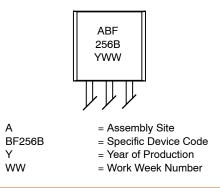
ABSOLUTE MAXIMUM RATINGS

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Temperature Range	–55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

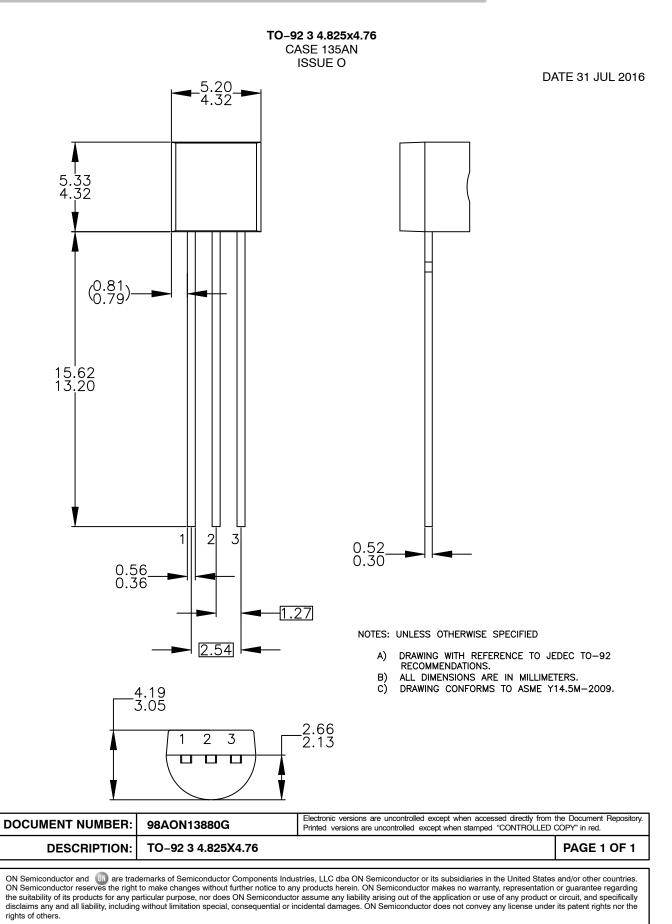

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
PD	Total Device Dissipation at $T_A = 25^{\circ}C$	350	mW
	Derate Above 25°C	2.8	mW/°C

TO-92-3 CASE 135AN

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
BF256B	TO-92-3	10,000 Bulk/Bag

ELECTRICAL CHARACTERISTICS Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0$, $I_G = 1 \ \mu A$	-30	-	V
V _{GS}	Gate-Source Voltage	V_{DS} = 15 V, I_D = 200 μA	-0.5	-7.5	V
V _{GS} (off)	Gate-Source Cut-Off Voltage	V _{DS} = 15 V, I _D = 10 nA	-0.5	-8.0	V
I _{GSS}	Gate Reverse Current	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0$	-	-5	nA
I _{DSS}	Zero-Gate Voltage Drain Current	V _{DS} = 15 V, V _{GS} = 0	6	13	mA
gfs	Common Source Forward Transconductance	V _{DS} = 15 V, V _{GS} = 0,f = 1 kHz	4.5	-	mmhos

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

© Semiconductor Components Industries, LLC, 2019