Communication ICs

IF detector IC for 900MHz spread spectrum cordless phones BH4127FV

The BH4127FV is a mixer, IF amplifier, and FM detector IC developed for use with 900MHz spread spectrum cordless phones

Applications

900MHz spread spectrum cordless phones

Features

- 1) Built-in mixer circuit, IF circuit, RSSI circuit, and FM detector circuit.
- 2) Operates at mixer input frequencies ranging from 20 to 300 MHz.
- 3) Equipped with a battery save function.
- 4) FM detector circuit demodulates up to ±750kHzdev.
- 5) FM detector circuit demodulates up to 2.6Mbps.

•Absolute maximum ratings (Ta = 25° C, with the measurement circuit)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7.0	V
Power dissipation	P⊳	350*	mW
Storage temperature	Tstg	-55~+125	Ĉ

* Reduced by 3.5mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	2.3~5.5	V
Operating temperature	Topr	$-40 \sim +85$	Ĵ

Block diagram

Communication ICs

Pin descriptions

Pin No.	Function	Internal peripheral circuit	DC voltage(V)
1	Local oscillator pin (base) Connect crystal resonator and capacitor	vcc ↓ ↓ ↓	Vcc-0.6
2	Local oscillator pin (emitter) Connect crystal resonator or inject from external capacitor		Vcc
3	Battery save pin Pin 3 voltage ≤ 0.2 V: Battery save 2V \leq pin 3 voltage \leq Vcc: Active	30k	_
4	Mixer output pin Connect ceramic filter Output impedance: 330 Ω		Vcc-1.5
5	Ground pin	GND for IF stage and FM detection stage	GND
6	IF amplifier bypass pin Connect capacitor		Vcc
7	IF amplifier input pin Connect ceramic filter Input impedance: 330 Ω		Vcc
8	Vcc pin 1	Vcc for MIX stage and IF early stage	Vcc
9	Vcc pin 2	Vcc for IF later stage and FM detection stage	Vcc

Communication ICs

BH4127FV

Pin No.	Function	Internal peripheral circuit	DC voltage (V)
10	RSSI output pin Connect capacitor		0.1
11 12	IF amplifier output pin Pins 11 and 12 are opposite-phase output		Vcc—1
13	Discriminator pin Connect phase shift coil or ceramic discriminator	13 We we	Vcc
14	FM demodulated signal output pin Output impedance is 360 Ω		0.9
15	Ground pin	GND for MIX stage	GND
16	Mixer pin Connect first IF signal from DC cutoff		1.0

ROHM

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 3.0V)

Signal source: fin (MIX) = 254.4MHz, fin (LO) = 243.2MHz, 100dB μ V, fin (IF) = 11.2MHz AC level to be indicated by termination

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	la	4.4	5.5	6.6	mA	With local oscillation OFF
Current during battery save	lq(BS)	_	0	5	μA	-
	Vтн–н	2	_	Vcc	v	Active
Battery save function input voltage	Vth-l	GND	_	0.2	v	Battery save
〈MIX—oscillator〉						
Mixer operating frequency	fмıx	20	_	300	MHz	-
Mixer conversion gain	Gvc	16	20	24	dB	$V_{IN(MIX)} = 60 dB \mu V$
-1dB compression output level	Vом	-	103	_	dB µ V	_
3rd order intercept point	IP3	_	110	_	dB µ V	f1=248.75MHz, f2=249.05MHz
Noise index	NF	_	9.7	_	dB	LC matching input
Mixer input admittance	YIN (MIX)	_	1.25+j7.47	_	ms	f=250MHz
Mixer output resistance	Ro(MIX)	_	330	_	Ω	_
Local oscillator operating frequency	fLO	20	_	120	MHz	_
Local input level	VIN(LO)	95	100	105	dB µ V	-
Local input admittance	YIN(LO)	_	1.36+j9.72	_	ms	f=250MHz
$\langle IF section \rangle$						L
IF operating frequency	fı⊨	4	_	15	MHz	-
IF amplifier gain	Gv	_	75	_	dB	_
IF input resistance	Rin(if)	_	330	_	Ω	_
IF output level	Voif	0.4	0.5	0.6	VP-P	$V_{IN(IF)} = 80 dB \mu V$
IF output duty ratio	DR	40	50	60	%	$V_{IN(IF)}$ =80dB μ V, CL=10pF
⟨RSSI section⟩						
Output voltage 1	VRSSI1	_	0.15	0.4	V	No input
Output voltage 2	VRSSI2	1.0	1.2	1.4	V	$V_{IN(IF)} = 70 \text{dB} \mu \text{V}$
Output voltage 3	VRSSI3	1.8	2.0	2.2	V	$V_{IN(IF)} = 100 dB \mu V$
Dynamic range	DR	_	70	_	dB	_
Output resistance	Ro(RSSI)	12	15	18	kΩ	-
Rise time at power on	Τον	-	20	_	μs	CL=100pF, VIN(MIX)=60dB μ V
Fall time at power off	Toff	-	5	_	μs	CL=100pF, VIN(MIX)=60dB μ V
RSSI rise time	TR	-	9	_	μs	CL=100pF, VIN(MIX)=60dB μ V
RSSI fall time	TF	-	11	_	μs	CL=100pF, VIN(MIX)=60dB μ V

Signal source: f_{IN (IF)} = 11.2MHz, $\Delta f = \pm 100 kHz$ dev, fm = 1kHz

AC level to be indicated by termination

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
(Detector section)								
Detection sensitivity	Sdet	_	1.243	_	mV / kHz	$V_{IN}(IF) = 80 dB \mu V$		
Detection output level	Vo	63	87	120	mVrms	$V_{IN (IF)} = 80 dB \mu V$		
Detection frequency	fdet	_	1.3	_	MHz	$V_{IN (IF)} = 80 dB \mu V$		
12dB SINAD sensitivity	S (12dB)	12	16	20	dB µ V			
S / N ratio	S/N	_	70	_	dB	$V_{IN}(IF) = 80 dB \mu V$		
AM rejection ratio	AMR	-	60	-	dB	$V_{IN (IF)} = 80 \text{dB} \mu \text{V}, \text{AM} = 30\%$		

Measurement circuit

Fig.1

Application example

Fig.2