

Features

- 600 V, 20 A, Low Collector-Emitter Saturation Voltage (V_{CE(sat)})
- Trench-Gate Field-Stop technology
- Optimized for conduction
- Low switching loss
- RoHS compliant*

Applications

- Switch-Mode Power Supplies (SMPS)
- Uninterruptible Power Sources (UPS)
- Power Factor Correction (PFC)
- Stepper motors

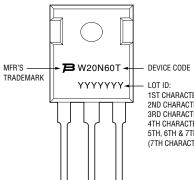
BIDW20N60T Insulated Gate Bipolar Transistor (IGBT)

General Information

The Bourns® Model BIDW20N60T IGBT device combines technology from a MOS gate and a bipolar transistor for an optimum component for high voltage and high current applications. This device uses Trench-Gate Field-Stop technology providing greater control of dynamic characteristics with a lower conduction loss and fewer switching losses. In addition, this structure provides a positive temperature coefficient.

Additional Information

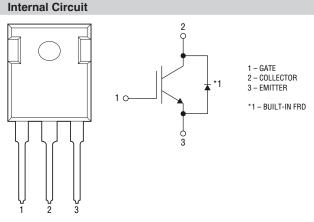
Click these links for more information:


Maximum Electrical Ratings (T_C = 25 °C, unless otherwise specified)

Parameter	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	600	V
Continuous Collector Current (T _C = 25 °C), limited by T_{jmax}	Ι _C	40	А
Continuous Collector Current (T _C = 100 °C), limited by T _{jmax}	Ic	20	А
Pulsed Collector Current, tp limited by Tjmax	I _{CP}	60	А
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Forward Current (T _C = 25 °C), limited by T_{jmax}	۱ _F	40	А
Continuous Forward Current (T _C = 100 °C), limited by T _{jmax}	۱ _F	20	А
Short-circuit Withstand Time (V_{CE} = 300 V, V_{GE} = 15 V)	T _{SC}	10	μs
Total Power Dissipation	P _{total}	192	W
Storage Temperature	T _{STG}	-55 to +150	°C
Operating Junction Temperature	Tj	-55 to +150	°C

Thermal Resistance

Parameter	Symbol	Мах	Unit
IGBT Thermal Resistance Junction - Case	R _{th(j-c)_IGBT}	0.65	°C/W
Diode Thermal Resistance Junction - Case	R _{th(j-c)_Diode}	1.19	°C/W


Typical Part Marking

WARNING Cancer and

Reproductive Harm

1ST CHARACTER INDICATES PRODUCTION LINE 2ND CHARACTER INDICATES GRADE 3RD CHARACTER INDICATES YEAR OF MANUFACTURE 4TH CHARACTER INDICATES MONTH OF MANUFACTURE 5TH, 6TH & 7TH CHARACTERS INDICATE SERIAL NO. (7TH CHARACTER COULD BE OMITTED)

*RoHS Directive 2015/863, Mar 31, 2015 and Annex. Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

BOURNS®

Static Electrical Characteristics (T_C = 25 °C, Unless Otherwise Specified)

Parameter	Symbol	Conditions	Value			Unit	
Farameter	Symbol Conditions		Min.	Тур.	Max.	onit	
Collector-Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 V, I_C = 250 \mu A$	600	—	—	V	
Collector Emitter Seturation Veltage	V	$V_{GE} = 15 \text{ V}, I_{C} = 20 \text{ A}$ $T_{C} = 25 \text{ °C}$	_	1.7	2.4	v	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$V_{GE} = 15 \text{ V}, I_{C} = 20 \text{ A}$ $T_{C} = 125 \text{ °C}$	_	1.9	_		
Diada Famuard On Valtage	V _F	I _F = 20 A, T _C = 25 °C	_	1.8	_	V	
Diode Forward On-Voltage		I _F = 20 A, T _C = 125 °C	_	1.5	_	V	
Gate Threshold Voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_C = 250 \ \mu A$	4.0	5.0	6.5	V	
Collector Cut-off Current	I _{CES}	$V_{GE} = 0 V, V_{CE} = 600 V$	_	_	200	μA	
Gate-Emitter Leakage Current	I _{GES}	$V_{CE} = 0 V, V_{GE} = \pm 20 V$	_	_	±400	nA	

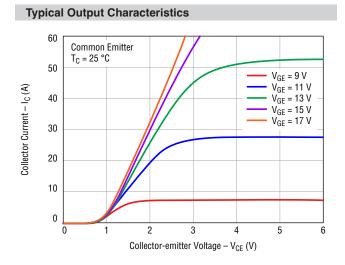
Dynamic Electrical Characteristics (T_C = 25 °C, Unless Otherwise Specified)

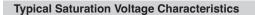
Parameter	Cumbal	O an d'iti an a	Value			11
	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Capacitance	Cies	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	_	1100	_	
Output Capacitance	C _{oes}		_	55	_	pF
Reverse Transfer Capacitance	C _{res}		_	22	_	
Total Gate Charge	Qg		_	52	_	
Gate-Emitter Charge	Q _{ge}	$V_{CE} = 400 \text{ V}, V_{GE} = 15 \text{ V}$ $I_{C} = 20.0 \text{ A}$	_	15	_	nC
Gate-Collector Charge	Q _{gc}		_	22	_	

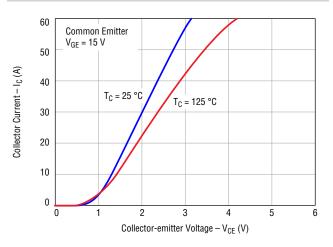
IGBT Switching Characteristics (Inductive Load, T_C = 25 °C, unless otherwise specified)

Devenueter	Symbol Conditions	Conditions		Value		
Parameter		Min.	Тур.	Max.	Unit	
Turn-on Delay Time	t _{d(on)}	V_{CE} = 400 V, V_{GE} = 15 V I _C = 20.0 A, R _G = 10 Ω	—	19	_	ns
Current Rise Time	tr		—	55	_	ns
Turn-off Delay Time	t _{d(off)}		—	48	_	ns
Current Fall Time	t _f		—	115	_	ns
Turn-on Switching Energy	Eon		—	1	_	mJ
Turn-off Switching Energy	E _{off}		_	0.3	_	mJ
Total Switching Energy	E _{ts}		—	1.3	_	mJ

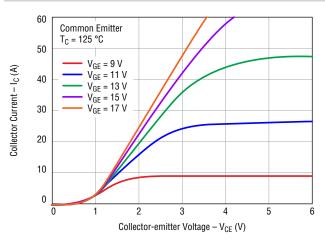
Specifications are subject to change without notice.

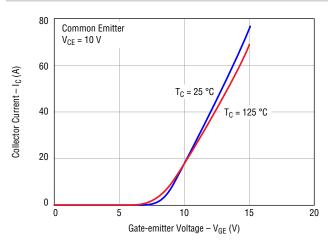

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.


BOURNS

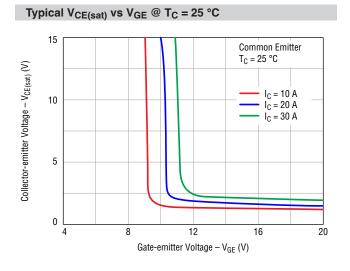

Diode Switching Characteristics (T_C = 25 °C, unless otherwise specified)

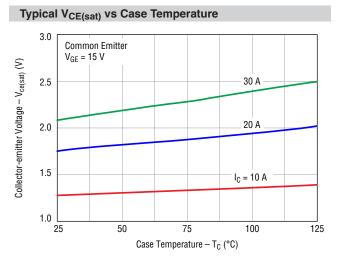
Parameter	Symbol Co	Conditions	Value			Unit
Parameter		Conditions	Min.	Тур.	Max.	Unit
Reverse Recovery Time	t _{rr}	dl _F /dt = 200 A/µs	—	33.7	_	ns
Reverse Recovery Charge	Q _{rr}	I _F = 20.0 A	—	73.3	_	nC


Electrical Characteristic Performance

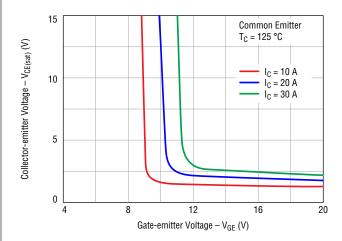


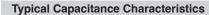
Typical Output Characteristics

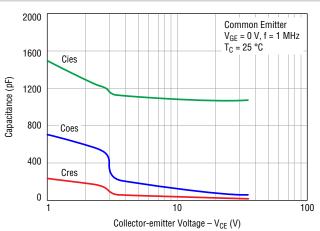

Typical Transfer Characteristics


Specifications are subject to change without notice.

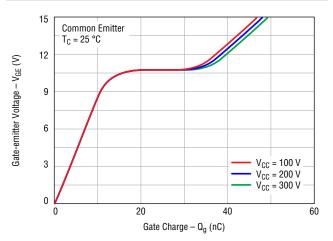
Users should verify actual device performance in their specific applications.

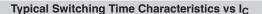

BOURNS

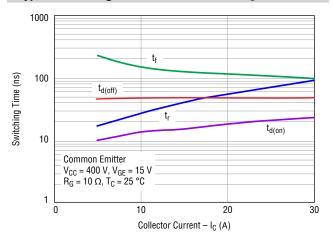


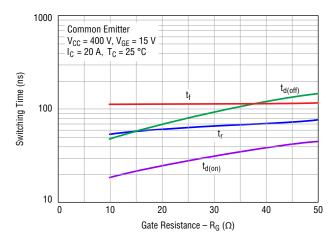

Electrical Characteristic Performance (continued)

Typical V_{CE(sat)} vs V_{GE} @ T_C = 125 °C

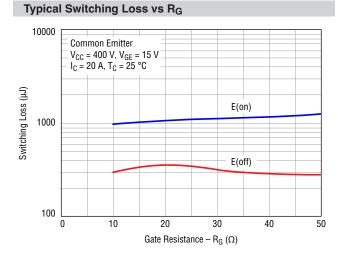

Specifications are subject to change without notice.

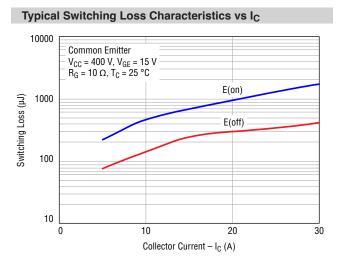

Users should verify actual device performance in their specific applications.


BOURNS

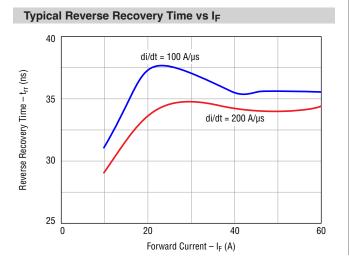

Electrical Characteristic Performance (continued)

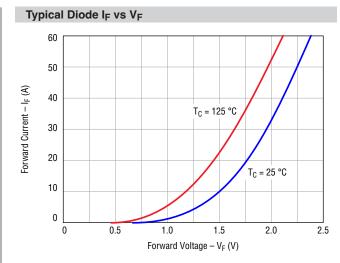
Typical Gate Charge Characteristics



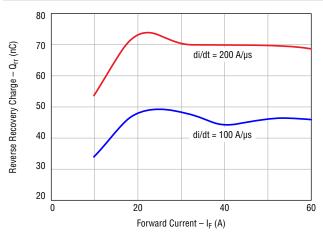


Typical Switching Time Characteristics vs $\ensuremath{\mathsf{R}_{\mathsf{G}}}$


Specifications are subject to change without notice.

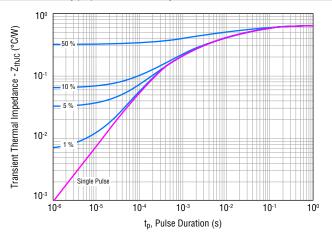

Users should verify actual device performance in their specific applications.

BOURNS

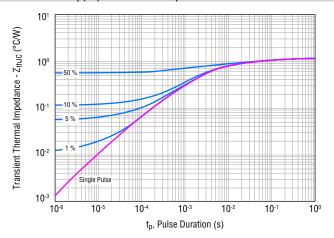


Electrical Characteristic Performance (continued)

Typical Reverse Recovery Charge vs I_F

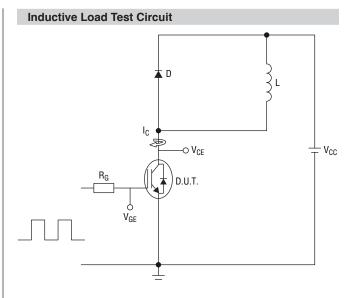

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.


BOURNS

Electrical Characteristic Performance (continued)

IGBT Transient Thermal Impedance vs tp(on) Duration (D=tp/T)


Diode Transient Thermal Impedance vs $t_{p(on)}$ Duration (D=t_p/T)

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.

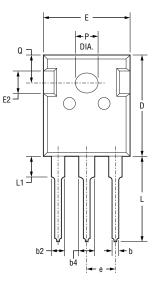
Electrical Characteristic Performance (continued) Forward Bias Safe Operating Area 10² 100 HS 10 10¹ ms Collector Current – I_c (A) 10 ms 10⁰ **10**-1 Note 1. Max. junction temperature: 150 °C 2. Max. reference temperature: 25 °C 10-2 10¹ 10² 10⁰ 10³ Collector-emitter Voltage - V_{CE} (V)

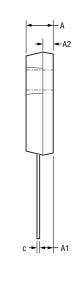
BOURNS

How to Order B I D W 20 N 60 T B = Bourns® I = IGBT · Type D = Discrete Package Code W = TO-247 Current Rating 20 = 20 A Device Type N = N-channel Nominal Voltage (divided by 10) -60 = 600 Ŭ Optimization -T = Medium Speed

Environmental Characteristics

ESD Class	(HBM)1C	


L = 2.8 mH, V_{CE} = 400 V, V_{GE} = 15 V, I_{C} = 20 A, R_G = 10 Ω


Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

BOURNS

Product Dimensions

DIMENSIONS: $\frac{MM}{(INCHES)}$

Packaging Specifications

Symbol	Min.	Nom.	Max.
А	<u>4.80</u>	<u>5.00</u>	<u>5.20</u>
	(.189)	(.197)	(.205)
A1	<u>2.21</u>	<u>2.41</u>	<u>2.59</u>
	(.087)	(.095)	(.102)
A2	<u>1.85</u>	<u>2.00</u>	<u>2.15</u>
	(.073)	(.079)	(.085)
b	<u>1.11</u> (.044)	_	<u>1.36</u> (.054)
b2	<u>1.91</u> (.075)	_	<u>2.25</u> (.089)
b4	<u>2.91</u> (.115)	_	<u>3.25</u> (.128)
с	<u>0.51</u> (.020)	_	<u>0.75</u> (.030)
D	<u>20.80</u>	<u>21.00</u>	<u>21.30</u>
	(.819)	(.827)	(.839)
E	<u>15.50</u>	<u>15.80</u>	<u>16.10</u>
	(.610)	(.622)	(.634)
E2	<u>4.40</u>	<u>5.00</u>	<u>5.20</u>
	(.173)	(.197)	(.205)
е		$\frac{5.44}{(.214)}BSC$	
L	<u>19.72</u>	<u>19.92</u>	<u>20.22</u>
	(.776)	(.784)	(.796)
L1	_	_	<u>4.30</u> (.169)
Р	<u>3.40</u> (.134)	_	<u>3.80</u> (.150)
Q	<u>5.60</u>	<u>5.80</u>	<u>6.00</u>
	(.220)	(.228)	(.236)

BOURNS

Asia-Pacific: Tel: +886-2 2562-4117 Email: asiacus@bourns.com EMEA: Tel: +36 88 885 877 Email: eurocus@bourns.com The Americas: Tel: +1-951 781-5500

Email: americus@bourns.com

www.bourns.com

07/22

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.