

With GaN HEMT, Power Factor Correction 240 W 400 V BM3G007MUV-EVK-002

User's Guide

<High Voltage Safety Precautions>

♦ Read all safety precautions before use

Please note that this document covers only the BM3G007MUV evaluation board (BM3G007MUV-EVK-002) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

Depending on the configuration of the board and voltages used,

Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

During Use

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

After Use

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled only by qualified personnel familiar with all safety and operating procedures.

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

PFC (power Factor Correction) IC

With GaN HEMT, Power Factor Correction 240 W 400 V BM3G007MUV Reference Board

The BM3G007MUV-EVK-002 reference board outputs 400 V voltage from the input of 90 Vac to 264 Vac.

The output current supplies up to 0.6 A.

BM3G007MUV-EVK-002

BM3G007MUV has a built-in GaN HEMT (650V 70 m Ω), driver and protection circuit.

By using this GaN Power Stage, we achieved a maximum efficiency of 97.8%.

The BD7695FJ which is BCM method PFC controller IC is used.

The BD7695FJ supplies the system which is suitable for all of products that requires PFC.

BCM is used for PFC part, and Zero Current Detection reduces both switching loss and noise.

THD is 8.4 % typical.

Electronics Characteristics

This is a typical value and not a guarantee of characteristics.

Unless otherwise noted; V_{IN} = 230 Vac, I_{OUT} = 0.6 A, Ta = 25 °C

Parameter		Min	Тур	Max	Units	Conditions
Input Voltage Range	VIN	90	230	264	Vac	
Input Frequency	fline	47	50/60	63	Hz	
Output Voltage	Vоит	376	395	415	V	
Maximam Output Power	Роит	-	-	240	W	I _{OUT} = 0.6 A
Output Current Range ^(Note 1)	Іоит	0.0	-	0.6	А	
Total Harmonic Distortion(THD)	THD		8.4	-	%	
PF(Power Factor)	PF	0.93	0.97	-	-	AC230 V I _{OUT} = 0.6 A
Efficiency	η	94	97.8	-	%	
Output Ripple Voltage ^(Note 2)	VR	-	10.4	20	Vpp	AC90 V I _{OUT} = 0.6 A
Hold Time	THOLD	20			ms	Vоит min 280 V
Operating Temperature Range	Тор	-10	+25	+55	°C	

(Note 1) Cool the component surface temperature with FAN, etc., if necessary, and the load application time so that the temperature does not exceed 105 °C. (Note 2) Not include spike noise

© 2023 ROHM Co., Ltd.

No. 65UG097E Rev.001

1/15

May.2023

Operation Procedure

- 1. Operation Equipment
 - 1. AC power supply 90 to 264 Vac, over 1000 W
 - 2. Electronic load capacity 0.6 A which supports input voltage 500 V
 - 3. Multi meter
 - 4. Power meter

2. Connect Method

- 1. AC power supply presetting range 90 to 264 Vac, Output switch is OFF.
- 2. Electronic load setting under 0.6 A, Load switch is OFF.
- 3. The reference board connects to measuring equipments and power supplies as in Figure. 1.
- 4. AC power supply switch is ON.
- 5. Check that output voltage is 400 V.
- 6. Electronic load switch is ON.
- 7. Operate with enough caution against electric shock because of non-isolated output voltage 400 V.

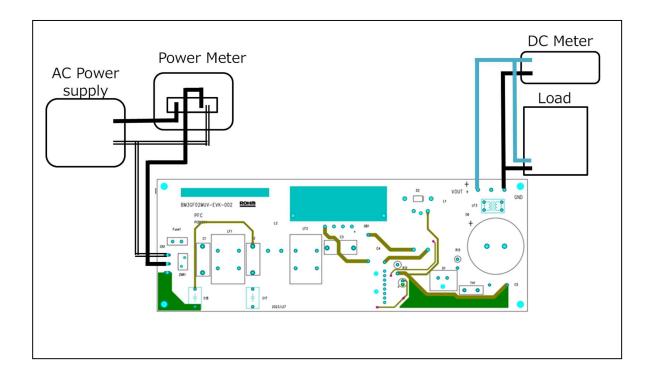


Figure 1. Connection Circuit

Derating

Maximum output power Po of the reference board is 240 W. The derating curve is shown in Figure. 2. If ambient temperature is over 25 °C, Consider the load current time and air-cool with FAN so that the component surface temperature does not exceed 105 °C.

Figure 2. Temperature derating curve

Schematics

 V_{IN} = 90 to 264 Vac, V_{OUT} = 400 V

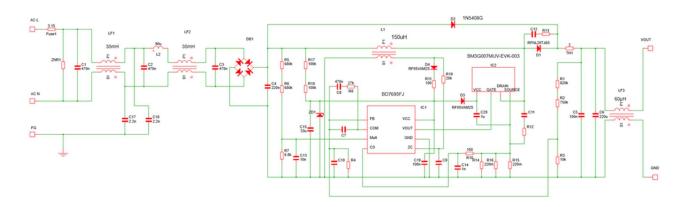


Figure 3. BM3G007MUV-EVK-002 Schematics

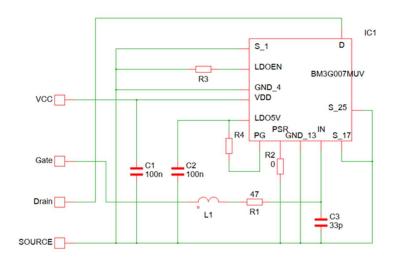


Figure 4. BM3G007MUV-EVK-003 Schematics

Bill of Materials

BM3G007MUV-EVK-002

ltem	Specification	Parts Name	Manufacurer	
C1,C2,C3	470 nF, 310 Vac	890334025039CS	WURTH ELECTRONIK	
C4	0.22 μF, 310 Vac	890334023027CS	WURTH ELECTRONIK	
C5	0.1 μF, 630 Vdc	890324023023CS WURTH ELECTR		
C6	220 μF, 450 V	861021486029 WURTH ELECT		
C8	0.47uF	UMK212BJ474KG-T	TAIYO YUDEN	
C13	10 nF,50 V	885012206089	WURTH ELECTRONIK	
C14	1nF,50 V	HMK107B7102KA-T	TAIYO YUDEN	
C15	33 μF, 50 V	860020672012	WURTH ELECTRONIK	
C17,C18	2200 pF, Y1:300 Vac	DE1E3RA222MA4BP01F	MURATA	
C19	0.1 μF,50 V	GRM188R72A104KA35D	MURATA	
C20	1uF / 35V	GMK212BJ105KG-T	TAIYO YUDEN	
C7,C9,C10,C11,C12	_	NON-MOUNDTED		
CN1	3pin	B03P-NV(LF)(SN)	JST	
CN2	3pin	6.91138E+11	WURTH ELECTRONIK	
D1	FRD,20 A, 600 V	RFNL20TJ6S	ROHM	
D2	3 A, 1k V	1N5408G	Onsemi	
D3、D4	FRD, 0.5 A, 200 V	RF05VAM2S	ROHM	
DB1	600 V	GBUE2560-M3/P	VISHAY	
F1	310 Vac, 3.15 A	36913150000 LITTLE		
L1	150 µH 12 A	750345199	WURTH ELECTRONI	
L2	90 µH	7447013 WURTH ELECTRO		
LF1、LF2	35 mH/ 3.5 A	7448040435 WURTH ELECTRO		
LF3	60 µH	LF1246Y	ALPFATRANS	
HEATSHINK1	8.3℃/W	20PBE55-25B	MARUSAN	
HEATSHINK2	14 ℃/W	E2A-T220-38E	OHMITE	
HEATSHINK3	32.7 k/W	OSH-1525-SFL SANKYO THRMOTE		
IC1		BD7695FJ	ROHM	
IC2		BM3G007MUV-EVK-003	ROHM	
R1	820 kΩ	KTR18EZPF8203	ROHM	
R2	750 kΩ	KTR18EZPF7503 ROHM		
R3	10 kΩ	MCR03EZPFX1002	ROHM	
R5,R6	680 kΩ	KTR18EZPJ684	ROHM	
R7	6.8 kΩ	MCR03EZPJ682 ROHM		
R8	27kΩ	MCR03EZPJ273 ROHM		
R10,R11	100 Ω	MCR18EZPJ101 ROHM		
R15、R16	220 mΩ	LTR50UZPFLR220 ROHM		
R17,R18	100 kΩ	ESR18EZPJ104 ROHM		
R19	20 kΩ	ESR18EZPJ203 ROHM		
R4,R12,R13,R14	-	NON-MOUNDTED		
TH1	2 Ω, 4 Α	2D2-13LD	SEMITEC	
ZD1	24V	TFZV24B	ROHM	
SCREW1,SCREW2		P-4 3MC 3×8		
PCB		PCB0257E		

Materials may be changed without notifying.

 $\ @$ 2023 ROHM Co., Ltd. No. 65UG097E Rev.001 5/15 May.2023

Bill of Materials

BM3G007MUV-EVK-003

ltem	Specification	Parts Name	Manufacurer
C1,C2	0.1 µF,50 V	GRM188R72A104KA35D	MURATA
C3	33 pF,50 V	GRM1882C1H330JA01#	MURATA
IC1	Rdson 70 mΩ,650 V	BM3G007MUV	ROHM
L1	600 Ω	BLM18AG601SN1D	MURATA
R1	47 Ω	MCR03EZPJ470	ROHM
R2	0 Ω	MCR03EZPJ000	ROHM
R3,R4	-	NON-MOUNTED	
TP1,TP2,TP3,TP4		CK-1-2	MAC8
PCB		PCB0275D	

Materials may be changed without notifying.

© 2023 ROHM Co., Ltd.

No. 65UG097E Rev.001

6/15

May.2023

PCB

BM3G007MUV-EVK-002 Size: 210 mm x 75 mm

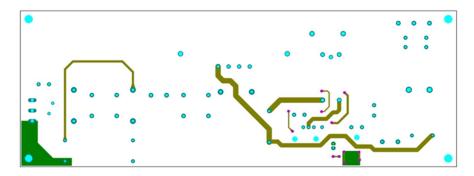


Figure 5. Top Layout (Top view)

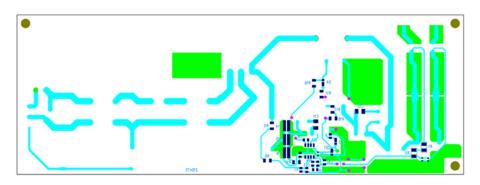
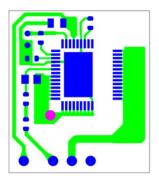



Figure 6. Bottom Layout (Top view)

BM3G007MUV-EVK-003

Size: 19 mm X 22 mm

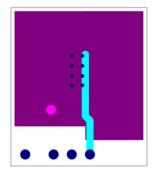
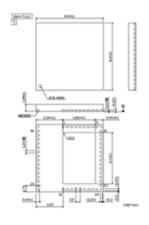



Figure8. Bottom Layout (Top view)

BM3G007MUV Overview

Feature

- Wide Operating Range for VDD Pin Voltage
- Wide Operating Range for IN Pin Voltage
- Low VDD Quiescent and Operating Current
- High dv/dt Immunity
- Adjustable Gate Drive Strength
- Power Good Signal Output
- VDD UVLO Protection
- Thermal Shutdown Protection

Key Specification

Turn-on Delay Time:

Operating Power Supply Voltage Range

 VDD pin:
 6.25 V to 30 V

 D pin:
 650 V(Max)

 IN pin:
 -0.6 V to 30 V

Allowable Input Switching Frequency: 2 MHz (Max)
 Circuit Current 0.58 mA (Typ.)

Turn-off Delay Time: 15 ns (Typ)
 Operating Temperature Range -40 °C to +105 °C
 Gan Hemt D-S on State Resistance: 70 mΩ (Typ)

Package W(Typ) x D(Typ) x H(Max)

VQ46TV80AW 8.0 mm x 8.0 mm x 1.0 mm

Pitch 0.5 mm

12 ns (Typ)

Figure 9. Pin Configuration

Table 1. BM3G007MUV PIN description

Pin No.	Pin Name	I/O	Function
1,2,17-22,24-32,EXP	S	0	GaN HEMT SOURCE pin
3	LDOEN	I	LDO function enable/disable pin
4,13	GND	0	GND pin
5,7,9,19,14,16,23,24	N.C	-	Non-connection
6	VDD	I	Power supply input pin
8	LDO5V	0	5 V LDO output pin
11	PG	0	Power good signal output pin
12	RSR	I	Gate drive strength adjustment pin
15	IN	I	Non-inverting gate drive input
33-46	D	I	GaN HEMT DRAIN pin
	EXP	0	GaN HEMT SOURCE pin
	C.S	-	Corner pin
	C.N.C	-	Cornaer pin, non-connection

Performance Data

Load Regulation

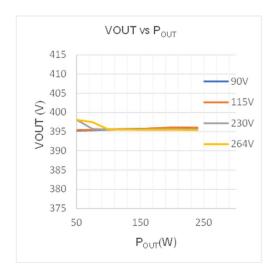


Figure 10. Load Regulation (V_{OUT} vs P_{OUT})

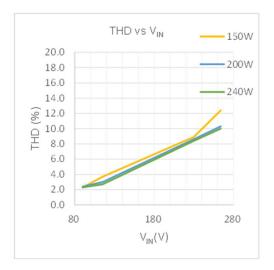


Figure 12. Total Harmonic Distortion (THD vs V_{IN})

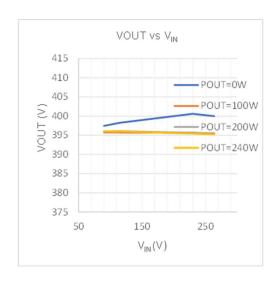


Figure 11. Line Regulation (V_{OUT} vs V_{IN})

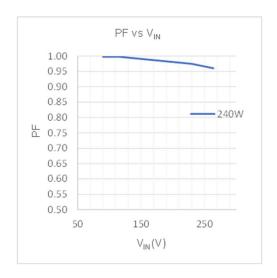


Figure 13. Power Factor (PF vs V_{IN})

Efficiency

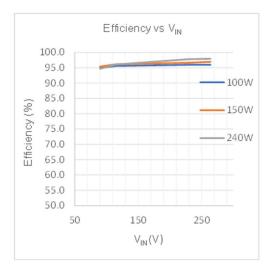


Figure 14. Efficiency (Efficiency vs VIN)

Harmonic Current

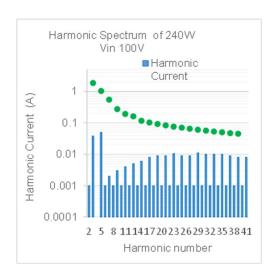


Figure 15. Harmonic Current V_{IN} = 100 V_{ac}

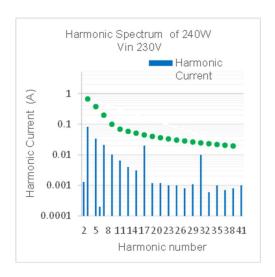


Figure 16. Harmonic Current V_{IN} = 230 V_{ac}

Input Current

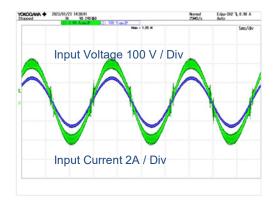


Figure 17. Input Current V_{IN} = 115 V_{ac} , I_{OUT} = 0.6 A

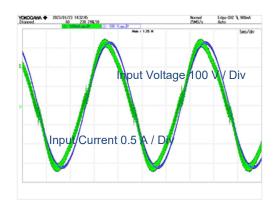


Figure 18. Input Current V_{IN} = 230 V_{ac}, I_{OUT}=0.6 A

$\underline{\text{V}_{DS, ID} \text{WaveForm}}$ $\underline{\text{V}_{IN}} = 90 \ \text{V}_{ac} \text{ Io} = 0.6 \ \text{A}$

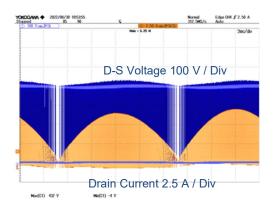


Figure 19. VDS, ID VIN = 90 Vac IOUT = 0.6 A

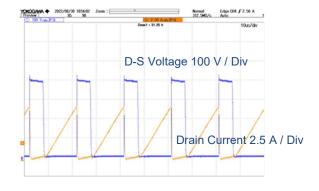


Figure 20. VDS,ID ZOOM

Hold time

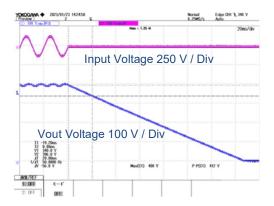
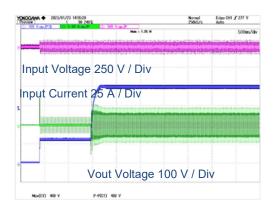
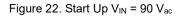




Figure 21. Hold time

Start Up Rload = 650 Ω

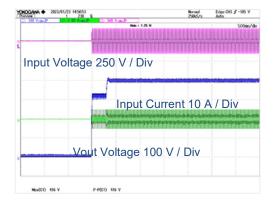


Figure 23. Start Up V_{IN} = 264 V_{ac}

Load Transient Io = 0.0 A ⇔ 0.6 A

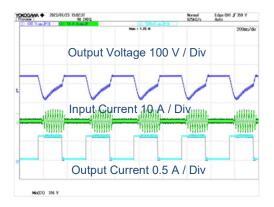


Figure 24. Load Transient V_{IN} = 90 V_{ac}

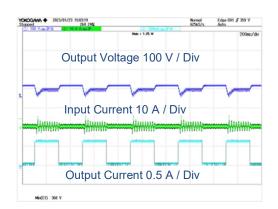


Figure 25. Load Transient VIN = 264 Vac

Output ripple Io = 0.6 A

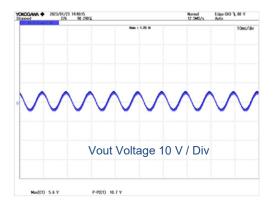


Figure 26. Output ripple V_{IN} = 90 V_{ac}

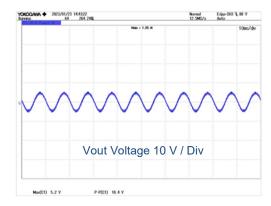


Figure 27. Output ripple V_{IN} = 264 V_{ac}

· Operating Temperature

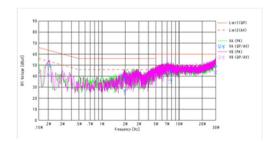

Measurement results 30 minutes after power-on.

Table 2. Component surface temperature. (Ta=24°C)

VIN [Vac]	IOUT [A]	D1 [℃]	GaN [℃]	L2	FL1	FL2
90	0.6	74.4	70.0	63.5	64.0	71.7
264	0.6	63.1	48.0	32.2	30.3	33.1

<u>EMI</u>

Conducted Emission: CISPR22 Pub 22 Class B

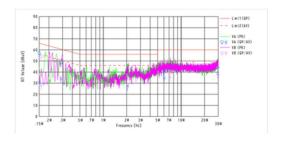


Figure 28. V_{IN} = 100 V_{ac} / 60 Hz, I_{OUT} = 0.6 A

Figure 29. V_{IN} = 230 V_{ac} / 60 Hz, I_{OUT} = 0.6 A

Revision History

Date	Rev.	Changes
24.May.2023	001	New Release