

# Gate Driver BM61M41RFV-C Evaluation Board BM61M41RFV-EVK001

| User's Guide |  |
|--------------|--|

#### < High Voltage Safety Precautions >

Please note that this document covers only the BM61M41RFV-C evaluation board (BM61M41RFV-EVK001) and its functions. For additional information, please refer to the datasheet.

## To ensure safe operation, please carefully read all precautions before handling the evaluation board



Depending on the configuration of the board and voltages used,

#### Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

#### **Before Use**

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

#### **During Use**

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

#### **After Use**

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled only by qualified personnel familiar with all safety and operating procedures.

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

www.rohm.com HVB01E



#### **Isolated Gate Driver**

### BM61M41RFV-C Evaluation Board

#### BM61M41RFV-EVK001

The BM61M41RFV-EVK001 board can be driving MOSFET Power Devices. The Input-side power supply voltage is from 4.5 to 5.5 V. The output-side power supply is from 9 to 24 V. The BM61M41RFV has Power Supply protections which are the Under-Voltage Lockout (UVLO) function at Input-side and Output-side. The Active Miller Clamping is included for gate control. The BM61M41RFV-EVK001 allows designers to evaluate Rohm's Gate Driver family for various applications.

#### **Application**

**MOSFET Gate Drive** 

#### **Electric Characteristics**

Features and electric characteristics are complied with BM61M41RFV-C. The BM61M41RFV-C datasheet can be referenced to help facilitate designs.

#### Operating Range

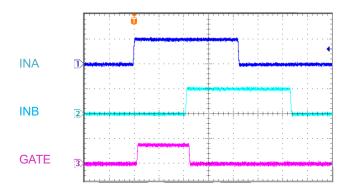
| Parameter                  | Symbol                   | Min | Max  | Units |
|----------------------------|--------------------------|-----|------|-------|
| Input-side Supply Voltage  | VCC1 <sup>(Note 1)</sup> | 4.5 | 5.5  | V     |
| Output-side Supply Voltage | VCC2 <sup>(Note 2)</sup> | 9   | 24   | V     |
| Operating Temperature      | Topr                     | -40 | +125 | °C    |

(Note 1): Relative to GND1 (Note 2): Relative to GND2

#### Absolute Maximum Ratings

| Parameter                  | Symbol           | Limits Ur                                     |   |
|----------------------------|------------------|-----------------------------------------------|---|
| Input-side Supply Voltage  | VCC1             | -0.3 to +7.0 <sup>(Note 3)</sup>              | V |
| Output-side Supply Voltage | VCC2             | -0.3 to +30.0 <sup>(Note 4)</sup>             | V |
| INA Pin Input Voltage      | VINA             | -0.3 to +VCC1+0.3 or +7.0 <sup>(Note 3)</sup> | V |
| INB Pin Input Voltage      | V <sub>INB</sub> | -0.3 to +VCC1+0.3 or +7.0 <sup>(Note 3)</sup> | V |

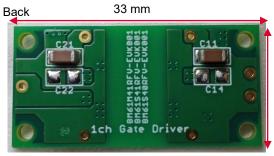
(Note 3): Relative to GND1 (Note 4): Relative to GND2


#### Terminal Descriptions

| Terminal name | Description              |  |
|---------------|--------------------------|--|
| VCC1          | Input-side Power Supply  |  |
| INA           | Input-side Control A     |  |
| INB           | Input-side Control B     |  |
| GND1          | Input-side Ground        |  |
| GND2          | Output-side Ground       |  |
| GATE          | Output-side Gate Control |  |
| VCC2          | Output-side Power Supply |  |

#### Input / Output terminal Control

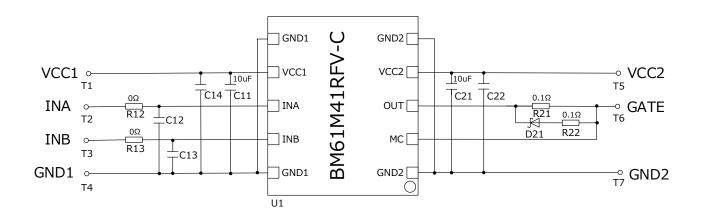
| INA (input) | INB (input) | GATE (Output) |
|-------------|-------------|---------------|
| L           | Н           | L             |
| Н           | Н           | L             |
| L           | L           | L             |
| Н           | L           | Н             |


#### Waveform



#### Evaluation Board

Front






16 mm

#### **Schematics**

R12, R13, R21 and R22 are implemented interim resisters for shipment check. Please replace each resister which can work with Power Device or input device appropriately.



#### **Bill of Materials**

| Bill of Materials    |                                             |                                     |                                 |                    |      |
|----------------------|---------------------------------------------|-------------------------------------|---------------------------------|--------------------|------|
| Device               | Parts Number                                | Description                         | Manufacturer                    | Parts name         | Qty. |
| Gate Driver          | U1                                          | 1ch, 9V - 24V                       | 1ch, 9V - 24V ROHM BM61M41RFV-C |                    | 1    |
| Innut Conneitor      | C11                                         | 10μF, 50V, X7R, 3216                | TDK                             | CGA5L1X7R1H106K160 | 1    |
| Input Capacitor      | C14                                         | (no stuff)                          |                                 |                    | 0    |
| Innut signal filter  | R12, R13                                    | 0 ohm, 1608                         | ROHM                            | MCR03EZPJ000       | 2    |
| Input signal filter  | C12, C13                                    | (no stuff)                          |                                 |                    | 0    |
| Outrut Consoiter     | C21                                         | 10μF, 50V, X7R, 3216                | TDK                             | CGA5L1X7R1H106K160 | 1    |
| Output Capacitor C22 |                                             | (no stuff)                          |                                 |                    | 0    |
|                      | R21                                         | 0.1 ohm, 3216                       | ROHM                            | LTR18EZPJLR10      | 1    |
| Gate                 | R22                                         | 0.1 ohm, 3216                       | ROHM                            | LTR18EZPJLR10      | 1    |
|                      | D21                                         | Schottky Diode, 30V, 5A             | ROHM                            | RBR5L30BDD         | 1    |
| Test pin             | T1, T2, T3, T4,<br>T5, T6, T7<br>( Option ) | (no stuff) Hirosugi-Keiki HT-0710-3 |                                 | HT-0710-3          | 7    |
| Spacer               | ( Option )                                  | M2, 10mm Hirosugi-Keiki BSN2010     |                                 | BSN2010            | 4    |
| Nut                  | ( Option )                                  | M2                                  | Hirosugi-Keiki                  | NNT-00             | 4    |
|                      |                                             |                                     |                                 |                    |      |

Materials may be changed without notice.

© 2019 ROHM Co., Ltd.

No. 62UG036E Rev.001
3/7
2019.10

#### Application and Operation procedure

Following figure is shown the example application. MOSFET and microcontroller [MCU] are connected to the board via terminals. Please make sure to replace the appropriate value for each resistor and capacitor on the board depends on your applications. The numerous application notes can be referenced to help facilitate designs. Useful application notes are listed on page 6.

#### **Example Application**

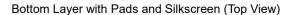


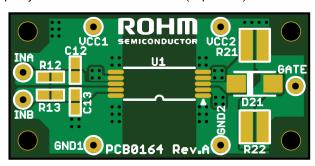
#### Equipment

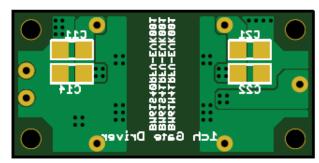
- DC Power Supply: 5 V for control signal [5 VDC], 9 to 24 V for Power Device [9 to 24 VDC]
- · Microcontroller [MCU]: Input signal for controlling GATE output
- Power Device: MOSFET We have many power devices which can work with Evaluation Board. You can get applicable product information from our web site. Some products are shown on page 7.

#### Instructions

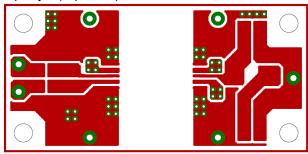
Before start to connect, make sure to turn off all equipment for your safety.


- 1. Connect 5 VDC to VCC1-GND terminal on board. Stay turn off the power supply.
- Connect 9 to 24 VDC to VCC2-GND2 terminal on board. Stay turn off the power supply.
- 3. Connect MCU to the INA and INB terminal on board.
- Refer to the Input / Output terminal Control description on page 2.
- 4. Connect GATE terminal on board to gate terminal on power device.
- 5. Turn on the 5 VDC and MCU.
- 6. Turn on the 9 to 24 VDC.

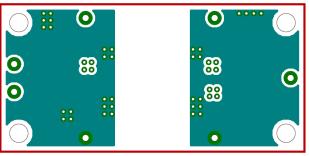

#### **PCB Layout**


Board size: 33 x 16 mm, Material:FR-4, 4-layer.

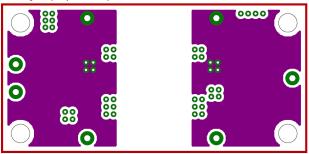
Input-side capacitors and output capacitors [C11, C14, C21, C22] are placed on bottom side in order to reduce board size. When you design your PCB layout, we recommend to place them to the same side and near the gate driver as close as possible.


Top Layer with Pads and Silkscreen (Top View)

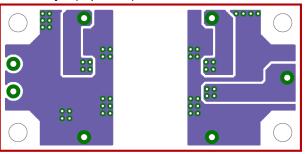




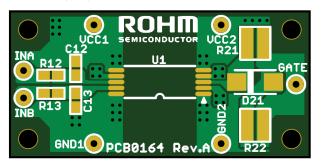




Top Layer (Top View)

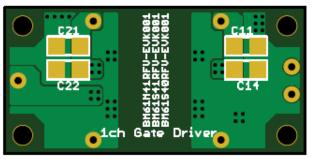



2<sup>nd</sup> Layer (Top View)




3<sup>rd</sup> Layer (Top View)




Bottom Layer (Top View)



Silkscreen (Top)



Silkscreen (Bottom)



We have numerous power devices which are suitable for your requests. For the MOSFET, please visit our web site below:

https://www.rohm.com/products/transistors/mosfets

Following examples are MOSFET for high-speed switching specifications.

| Matching<br>Products | Drain-Source<br>Voltage<br>VDSS[V] | Polarity | Drain<br>Current<br>[A] | RDS(on)[Ohm]<br>VGS=Drive<br>(Typ.) | Drive<br>Voltage<br>[V] | Package code      |
|----------------------|------------------------------------|----------|-------------------------|-------------------------------------|-------------------------|-------------------|
| R6504KNJ             |                                    |          | 4                       | 0.955                               |                         |                   |
| R6507KNJ             |                                    |          | 7                       | 0.605                               |                         |                   |
| R6509KNJ             |                                    |          | 9                       | 0.53                                |                         |                   |
| R6511KNJ             |                                    |          | 11                      | 0.36                                |                         | TO-263<br>(D2PAK) |
| R6515KNJ             |                                    |          | 15                      | 0.28                                |                         | (==: / :: :)      |
| R6520KNJ             |                                    | 20       | 0.185                   |                                     |                         |                   |
| R6524KNJ             |                                    |          | 24                      | 0.16                                |                         |                   |
| R6504KNX             | GEO.                               | Nob      | 4                       | 0.955                               | 10                      |                   |
| R6509KNX             | 650 Nch                            | Nch      | 9                       | 0.53                                | 10                      |                   |
| R6511KNX             |                                    |          | 11                      | 0.36                                |                         |                   |
| R6515KNX             |                                    |          | 15                      | 0.28                                |                         | TO-220FM          |
| R6520KNX             |                                    |          | 20                      | 0.185                               |                         |                   |
| R6524KNX             |                                    |          | 24                      | 0.16                                |                         |                   |
| R6530KNX             |                                    |          | 30                      | 0.125                               |                         |                   |
| R6520KNZ4            |                                    |          | 20                      | 0.185                               |                         | TO-247            |
| R6547KNZ4            |                                    |          | 47                      | 0.07                                |                         | 10-247            |

We also offer useful power device application notes for design and evaluation. Please visit our web site below:

https://www.rohm.com/search/application-notes

- 1. Gate-source voltage behavior in a bridge configuration, No.60AN135E
- 2. Gate-Source Voltage Surge Suppression Methods, No.62AN010E
- 3. Snubber circuits design method for SiC MOSFET, No.62AN037E
- 4. Switching Loss improvement by TO-247-4L with Driver Source, No.62AN04E

© 2019 ROHM Co., Ltd.

No. 62UG036E Rev.001
6/7
2019.10

**Revision History** 

| Date    | Revision Number | Description |
|---------|-----------------|-------------|
| 2019.10 | 001             | New Release |