

Gate Driver BM61S40RFV-C Evaluation Board BM61S40RFV-EVK002

User's Guide	

< High Voltage Safety Precautions >

Please note that this document covers only the BM61S40RFV-C evaluation board (BM61S40RFV-EVK002) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

Depending on the configuration of the board and voltages used,

Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

During Use

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

After Use

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled only by qualified personnel familiar with all safety and operating procedures.

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

www.rohm.com HVB01E

Isolated Gate Driver

BM61S40RFV-C Evaluation Board

BM61S40RFV-EVK002

The BM61S40RFV-EVK002 board can be driving two SiC Power Devices such as for High-side and Low-side on Half-Bridge application. The Input-side power supply voltage is from 4.5 to 5.5 V. The output-side power supply is from 16 to 20 V. The BM61S40RFV-C has Power Supply protections which are the Under-Voltage Lockout (UVLO) function at Input-side and Output-side, and the Over-Voltage Protect (OVP) function at output side. The Active Miller Clamping is included for gate control. The BM61S40RFV-EVK002 allows designers to evaluate Rohm's Gate Driver family for various applications.

Application

SiC MOSFET Gate Drive

Electric Characteristics

Features and electric characteristics are complied with BM61S40RFV-C. The BM61S40RFV-C datasheet can be referenced to help facilitate designs.

Operating Range

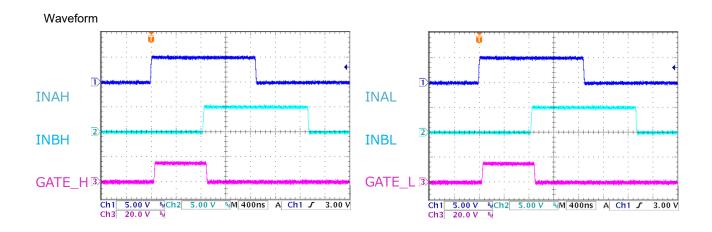
Parameter	Symbol	Min	Max	Units
Input-side Supply Voltage	VCC1 ^(Note 1)	4.5	5.5	V
Output-side Supply Voltage	VCC2 ^(Note 2)	16	20	V
Operating Temperature	Topr	-40	+125	° C

(Note 1): Relative to GND1 (Note 2): Relative to GND2

Absolute Maximum Ratings

Parameter	Symbol	Limits	Units
Input-side Supply Voltage	VCC1	-0.3 to +7.0 ^(Note 3)	V
Output-side Supply Voltage	VCC2	-0.3 to +30.0 ^(Note 4)	V
INA Pin Input Voltage	VINA	-0.3 to +VCC1+0.3 or +7.0 ^(Note 3)	V
INB Pin Input Voltage	VINB	-0.3 to +VCC1+0.3 or +7.0 ^(Note 3)	V

(Note 3): Relative to GND1 (Note 4): Relative to GND2

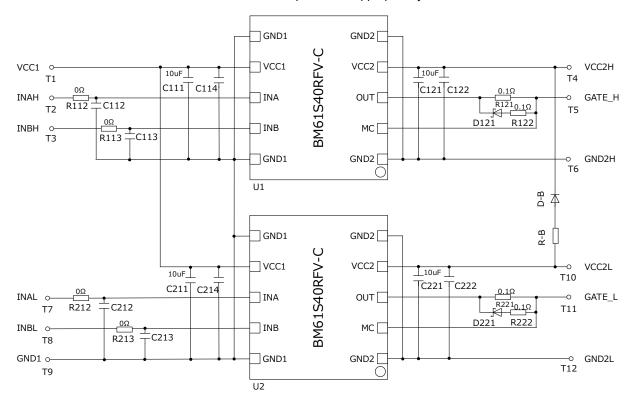

Terminal Descriptions

Pin name	Description			
VCC1	Input-side Power Supply			
INAH	Input-side Control A on High-side			
INBH	Input-side Control B on High-side			
INAL	Input-side Control A on Low-side			
INBL	Input-side Control B on Low-side			
GND1	Input-side Ground			
GND2L	Output-side Ground on Low-side			
GATE_L	Output-side Gate Control on Low-side			
VCC2L	Output-side Power Supply on Low-side			
GND2H	Output-side Ground on High-side			
GATE_H	Output-side Gate Control on High side			
VCC2H	Output-side Power Supply on High side			

Input / Output terminal Control

INAH (input)	INBH (input)	GATE_H (Output)
L	Н	L
Н	Н	L
L	L	L
Н	L	Н

INAL (input)	INBL (input)	GATE_L (Output)
L	Н	L
Н	Н	L
L	L	L
Н	L	Н



Evaluation Board

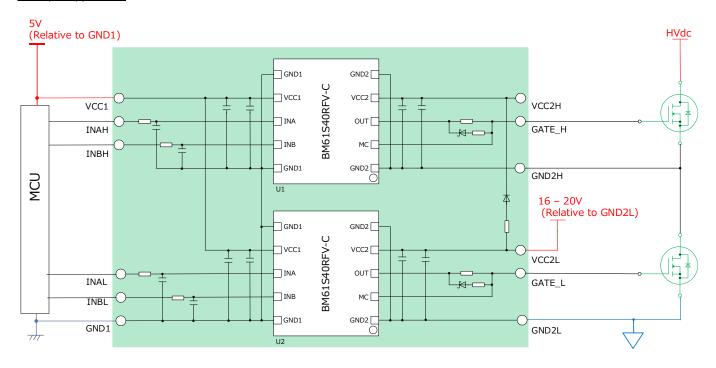
Front Back 33 mm VCC2H INAH GATE_H INBH 000 BM61S41RFU-EUKB02 BM61M41RFU-EUKB02 2ch Gate Driver GND2H VCC2_L INAL GATE_L INBL PCB0167 Rev.A GND1 32 mm GND1 GND2L

Schematics

R112, R113, R121, R122, R212, R213, R221, and R222 are implemented interim resisters for shipment check. Please replace each resister which can work with Power Device or input device appropriately.

Bill of Materials

Device	Parts No.	Description	Manufacturer	Parts name	Qty.
Gate Driver	U1, U2	1ch, 16-20V	ROHM	BM61S40RFV-C	2
T	C111, C211	10uF, 50V, X7R, 3216	TDK	CGA5L1X7R1H106K160	2
Input Capacitor	C114, C214	(no stuff)			0
	R112, R113, R212, R213	0 ohm, 1608	ROHM	MCR03EZPJ000	4
Input signal filter	C112, C113, C212, C213	(no stuff)			0
Outside Committee	C121, C221	10uF, 50V, X7R, 3216	TDK	CGA5L1X7R1H106K160	2
Output Capacitor	C122, C222	(no stuff)			0
	R121, R221	0.1 ohm, 3216	ROHM	LTR18EZPJLR10	2
Gate	R122,R222	0.1 ohm, 3216	ROHM	LTR18EZPJLR10	2
D121, D122 S		Schottky Diode, 30V, 5A	ROHM	RBR5L30BDD	2
Pootstran	D-B	(no stuff)			0
Bootstrap R-B ((no stuff)			0
Test pin	T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12 (Option)	(no stuff)	Hirosugi-Keiki	HT-0710-3	12
Spacer	(Option)	M2, 10mm	Hirosugi-Keiki	BSN2010	4
Nut	(Option)	M2	Hirosugi-Keiki	NNT-00	4

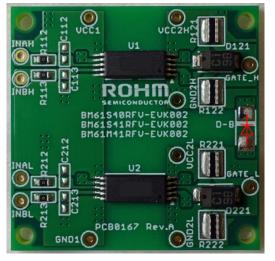

Materials may be changed without notice.

© 2019 ROHM Co., Ltd. No. 62UG042E Rev.001 4/9 2019.10

Application and Operation procedure

Following figure is shown the example application. SiC MOSFET and microcontroller [MCU] are connected to the board via terminals. VCC2H power can be supplied from VCC2L by using bootstrap circuit. Please place appropriate components on the EVK for bootstrap. Please make sure to replace the appropriate value for each resistor and capacitor on the board depends on your applications. The numerous application notes can be referenced to help facilitate designs. Useful application notes are listed on page 8.

Example Application


Additional Components for Bootstrapping

R-B and D-B parts are for bootstrapping. Place appropriate components depends on your applications. Examples:

D-B: ROHM RFN2LAM6STF [Reverse voltage: 600V, Current: 1.5A, Package: PMDTM]

R-B: ROHM ESR18 series resistor [Package size: 3216mm]

Front

Back

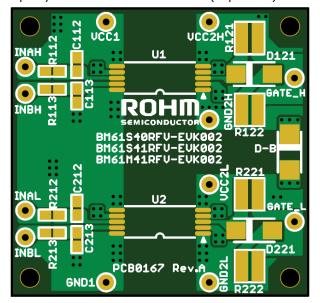
Equipment

- DC Power Supply: 5 V for control signal [5 VDC], 16 to 20 V for Power Device [16 to 20 VDC]
- · Microcontroller [MCU]: Input signal for controlling GATE output
- · Power Device: SiC MOSFET

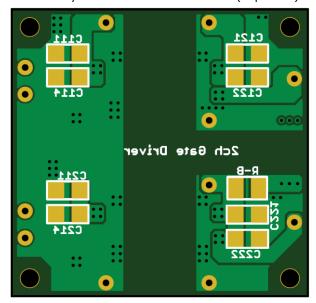
We have many power devices which can work with Evaluation Board. You can get applicable product information from our web site. Some products are shown on page 8.

Instructions

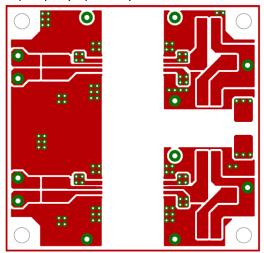
Before start to connect, make sure to turn off all equipment for your safety.

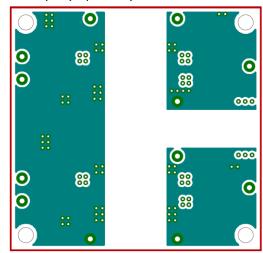

- Connect 5 VDC to VCC1–GND1 terminal on board. Stay turn off the power supply.
- Connect 16 to 20 VDC to VCC2L-GND2L terminal on board. Stay turn off the power supply.
- 3. Connect MCU to the INAH, INBH, INAL, and INBL terminal on board. Refer to the Input / Output terminal Control description on page 2.
- 4. Connect GATE H and GATE L terminal on board to each gate terminal on power devices.
- 5. Turn on the 5 VDC and MCU.
- 6. Turn on the 16 to 20 VDC.

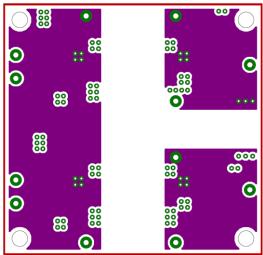
PCB Layout

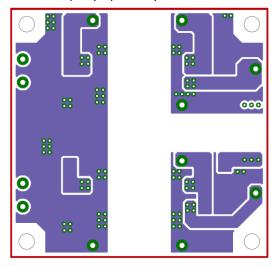

Board size: 33 x 32 mm, Material:FR-4, 4-layer.

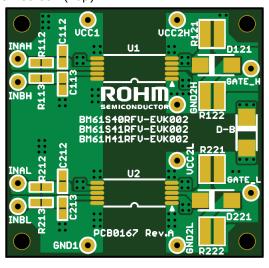
Input-side capacitors and output capacitors [C111, C114, C121, C122, C211, C214, C221, and C222] are placed on bottom side in order to reduce board size. When you design your PCB layout, we recommend to place them to the same side and near the gate driver as close as possible.

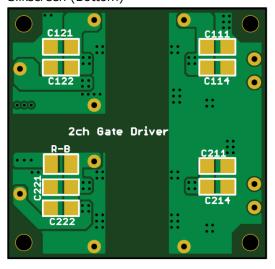

Top Layer with Pad and Silkscreen (Top View)


Bottom Layer with Pad and Silkscreen (Top View)


Top Layer (Top View)


2nd Layer (Top View)


3rd Layer (Top View)


Bottom Layer (Top View)

Silkscreen (Top)

Silkscreen (Bottom)

We have numerous power devices which are suitable for your requests.

For the SiC MOSFET, please visit our web site below:

https://www.rohm.com/products/sic-power-devices

Following examples are SiC MOSFET for automotive grade.

Matching Products	Drain- Source Voltage [V]	Drain-Source On-state Resistance (Typ) [mnc	Drain Current [A]	Total Power Dissipation [W]	Junction Temperature (Max) [°C]	Storage Temperature (Min) [°C]	Storage Temperature (Max) [°C]	Package
SCT3017ALHR		17	118	427				
SCT3022ALHR		22	93	339				
SCT3030ALHR	650	30	70	262				
SCT3060ALHR	030	60	39	165				
SCT3080ALHR		80	30	134				
SCT3120ALHR		120	21	103				
SCT3022KLHR		22	95	427	+175	-55	+175	TO-247N
SCT3030KLHR		30	72	339				
SCT3040KLHR		40	55	262				
SCT2080KEHR	1200	80	40	262				
SCT3080KLHR		80	31	165				
SCT3105KLHR		105	24	134				
SCT3160KLHR		160	17	103				

We also offer useful power device application notes for design and evaluation. Please visit our web site below:

https://www.rohm.com/search/application-notes

- 1. Gate-source voltage behavior in a bridge configuration, No.60AN135E
- 2. Gate-Source Voltage Surge Suppression Methods, No.62AN010E

© 2019 ROHM Co., Ltd.

No. 62UG042E Rev.001

8/9

2019.10

Revision History

Date	Revision Number	Description
2019.10	001	New Release