ONSEMI

N-Channel JFET Low-Frequency Low-Noise Amplifier

1. Drain 2. Source 3. Gate

SOT-23 CASE 318-08

MARKING DIAGRAM

M6 = Specific Device Code

= Date Code

Μ

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BSR58	SOT-23 (Pb-Free)	3000 / Tape & Reel

on on tape and reel specifications, rt orientation and tape sizes, please ape and Reel Packaging Specification RD8011/D.

ISIG	Slorage remperature nange	-33 10 +130	0	
TJ	Junction Temperature	150	°C	BSR58
Stresses excee device. If any c assumed, dama	ding those listed in the Maximum Ratings f these limits are exceeded, device func age may occur and reliability may be affe	table may dan tionality should cted.	nage the d not be	†For informati including par refer to our T Brochure, Bf
ELECTRICA	L CHARACTERISTICS ($T_C = 25^{\circ}C$ u	nless otherwise	e noted)	

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{GSS}	Gate-Source Voltage	V_{DS} = 0 V, I_{C} = 1.0 μ A	40.0	-	-	V
I _{GSS}	Gate Reverse Current	V _{GS} = 20 V	-	-	1.0	nA
I _{DSS}	Zero-Gate Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	8.0	-	80.0	mA
V _{GS} (off)	Gate-Source Cut-off Voltage	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 0.5 \text{ nA}$	0.8	-	4.0	V
V _{DS} (on)	Drain-Source On Voltage	V_{GS} = 0 V, I _D = 5 mA	-	-	0.4	V
r _{ds} (on)	Drain-Source On Reverse	$V_{GS} = 0 V$, $I_D = 0 mA$	-	-	60.0	Ω
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 0 V, V_{GS} = 10 V$	-	-	5.0	pF
t _d	Delay Time	$V_{DD} = 10 \text{ V}, V_{GS}(on) = 0 \text{ V}$ $I_D = 10 \text{ mA}, V_{GS}(off) = 10.0 \text{ V}$	-	-	10.0	ns
tr	Rise Time		-	-	10.0	
t _{off}	Turn-off Time		-	-	100.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BSR58

Description

This device is designed for low-power chopper or switching application sourced from process 51.

ABSOLUTE MAXIMUM RATINGS

(T_C = 25° C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DGO}	Drain-Gate Voltage	40	V
V _{GSO}	Gate-Source Voltage	-40	V
I _{GF}	Forward Gate Current	50	mA
P _{tot}	Total Power Dissipation Up to T _{amb} = 40°C	250	mW
T _{STG}	Storage Temperature Range	-55 to +150	°C
TJ	Junction Temperature	150	°C

© Semiconductor Components Industries, LLC, 2019