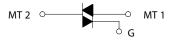

Surface Mount – 800V

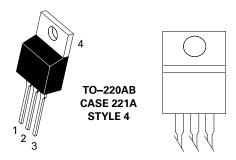
Additional Information

Accessories

Samples


Description

The BTB16 is designed for high performance full-wave AC control applications where high noise immunity and high commutating di/dt are required.


Features

- Blocking Voltage to 800 V
- On-State Current Rating of 16 Amperes RMS at 80°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 1500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 7.5 A/ms minimum at 125°C
- These are Pb-Free Devices

Functional Diagram

Pin Out

Surface Mount - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = -40^{\circ}$ to 125°C)	BTB16-600BW3G BTB16-700BW3G BTB16-800BW3G	V _{DRM} ,	600 700 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_{\rm C}$ = 8	0°C)	I _{T (RMS)}	16	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wa	ve, 60 Hz, T _c = 25°C)	I _{TSM}	170	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	120	A²sec
Non-Repetitive Surge Peak Off-State Voltage ($T_J = 25$ °C, t = 8.3 ms)		V_{DSM}/V_{RSM}	$V_{DSM}/V_{RSM} + 100$	V
Peak Gate Current ($T_J = 125$ °C, t $\leq 20\mu$ s)		I _{GM}	4.0	W
Average Gate Power ($T_J = 125^{\circ}C$)		$P_{G(AV)}$	1.0	W
Operating Junction Temperature Range	Operating Junction Temperature Range		-40 to +125	°C
Storage Temperature Range		T_{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	1.9 60	°C/W
Maximum Lead Temperature for Soldering Purpose	s, 1/8" from case for 10 seconds	T,	260	°C

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.005	A
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T = 125°C	I	-	-	2.0	mA

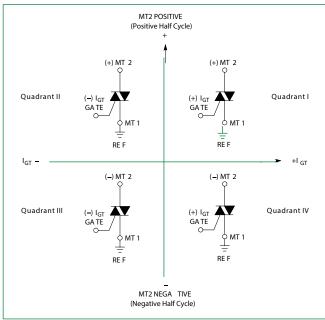
Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) $(I_{TM} = \pm 17 \text{ A Peak})$		V_{TM}	-	-	1.55	V
	MT2(+), G(+)		2.5	_	50	
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 30 \Omega)$	MT2(+), G(-)	l _{GT}	2.5	_	50	mA
	MT2(-), G(-)		2.5	_	50	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)		I _H	_	_	60	mA
Latching Current ($V_D = 12 \text{ V}, I_G = 50 \text{ mA}$)	MT2(+), G(+)	I _L	_	_	70	mA
	MT2(+), G(-)		_	_	90	
	MT2(-), G(-)		_	_	70	
	MT2(+), G(+)		0.5	_	1.7	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 30 \Omega$)	MT2(+), G(-)	$V_{\rm GT}$	0.5	_	1.1	V
	MT2(-), G(-)		0.5	_	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	V_{gd}	0.2	_	_	V
•	MT2(-), G(-)	35	0.2	_	_	

Recommended Operating Conditions may affect device reliability.

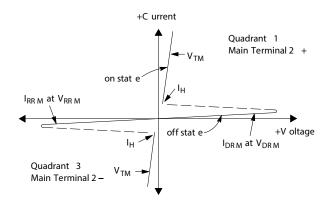
1. V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Surface Mount – 800V


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125^{\circ}$ C, No Snubber)	(dl/dt)c	7.5	_	-	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125^{\circ}\text{C}$, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, $\text{tr} \le 100$ ns)	dl/dt	_	_	50	A/µs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DBM}, Exponential Waveform, Gate Open, T_1 = 125°C)$	dV/dt	1500	_	_	V/µs

Voltage Current Characteristic of SCR


Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

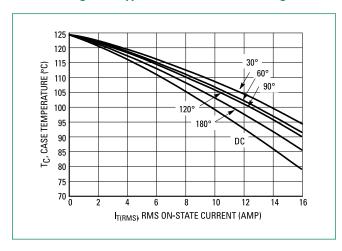
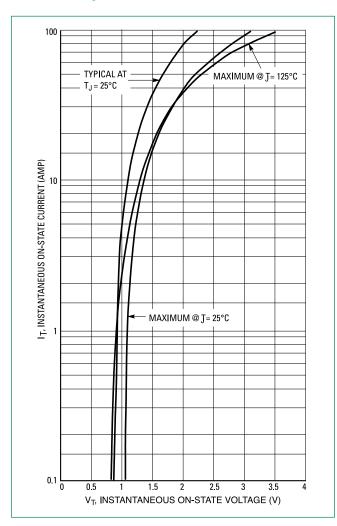
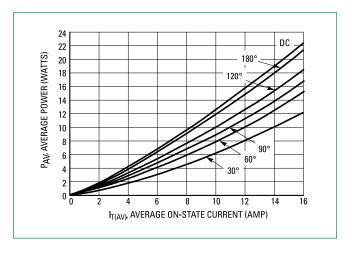
Quadrant Definitions for a Triac

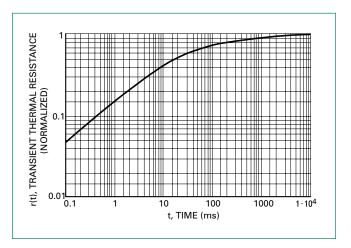
All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used

Surface Mount – 800V

Figure 1. Typical RMS Current Derating


Figure 3. On-State Characteristics

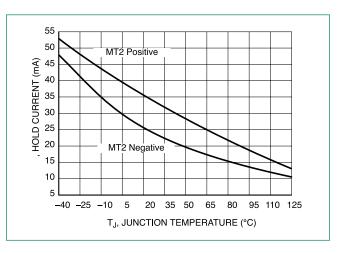

Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

Figure 5. Typical Hold Current Variation

Surface Mount – 800V

Figure 6. Typical Gate Trigger Current Variation

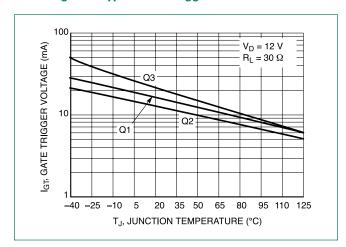


Figure 7. Typical Gate Trigger Voltage Variation

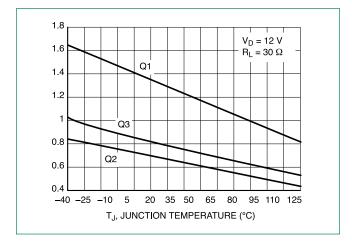
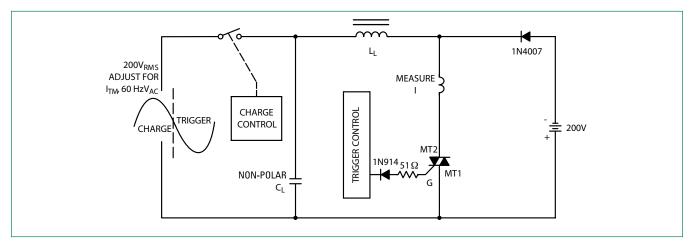



Figure 8. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

