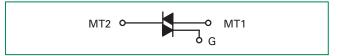

BTB16-600CW3G, BTB16-800CW3G

Pin Out


Description

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 16 Amperes RMS at 25°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 1000 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 8.5 A/ms minimum at 125°C
- These are Pb-Free Devices

Functional Diagram

Additional Information

Samples

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = -40^\circ$ to 125°C) BTB16 -600 CW3G BTB16 -800 CW3G	V _{DRM} , V _{RRM}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 80$ °C)	I _{T (RMS)}	16	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)	I _{TSM}	170	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	144	A ² sec
Non-Repetitive Surge Peak Off-State Voltage (T _J = 25°C, t = 10 ms)	V_{DSM}/V_{RSM}	V _{DSM} /V _{RSM} +100	V
Peak Gate Current ($T_J = 125$ °C, t = 20ms)	I _{GM}	4.0	W
Peak Gate Power (Pulse Width \leq 1.0 μ s, T_{c} = 80°C)	P _{GM}	20	W
Average Gate Power ($T_J = 125$ °C)	P _{G(AV)}	1.0	W
Operating Junction Temperature Range	T	-40 to +125	°C
Storage Temperature Range	T_{stg}	-40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{8JC}	1.9 60	°C/W
Maximum Lead Temperature for Solderi 10 seconds	ng Purposes, 1/8" from case for	T _L	260	°C

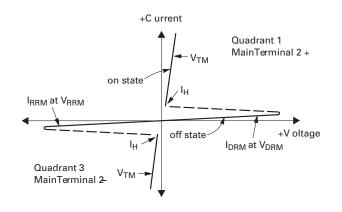
V_{DBM} and V_{RBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Electrical Characteristics • **OFF** (T₁ = 25°C unless otherwise noted; Electricals apply in both directions)

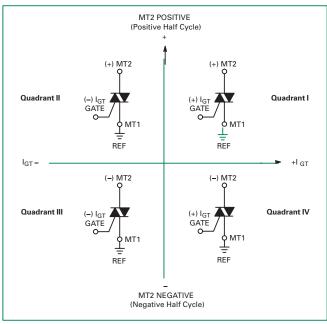
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_{_{\rm J}}=25^{\circ}{\rm C}$	I _{DRM} ,	-	-	0.005	
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	$T_J = 110^{\circ}C$	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - ON (T_j = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A Peak}$)		V _{TM}	-	_	1.55	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 33 \Omega$)	MT2(+), G(+)		2.0	-	35	
	MT2(+), G(-)	I _{GT}	2.0	-	35	mA
	MT2(-), G(-)		2.0	_	35	
Holding Current $(V_D = 12 \text{ V, Gate Open, Initiating Current} = \pm 500 \text{ mA})$		I _H	-	_	50	mA
	MT2(+), G(+)		-	_	60	
Latching Current ($V_D = 12 \text{ V}, I_G = = 1.2 \times I_{GT}$)	MT2(+), G(-)	I _L	-	-	65	mA
	MT2(-), G(-)		-	_	60	
	MT2(+), G(+)		0.5	-	1.7	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_L = 33 \Omega$)	MT2(+), G(-)	V _{GT}	0.5	_	1.1	V
	MT2(-), G(-)		0.5	-	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage (T _J = 125°C)	MT2(+), G(-)	V_{GD}	0.2	-	-	V
	MT2(-), G(-)		0.2	-	-	


2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2% .

Dynamic Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125$ °C, No Snubber)	(dl/dt)c	8.5	_	_	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125$ °C, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, $tr \le 100$ ns)	dl/dt	-	-	50	Α/μs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM'})$ Exponential Waveform, Gate Open, $T_J = 125$ °C)	dV/dt	1000	-	-	V/µs

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used

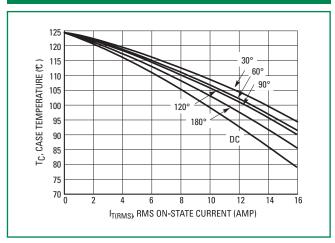


Figure 3. On-State Characteristics

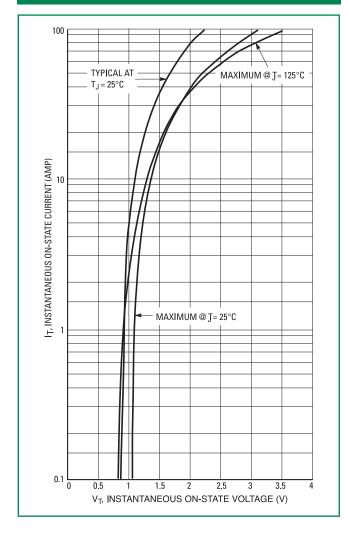
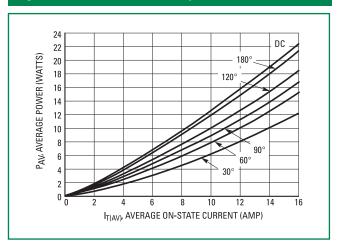



Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

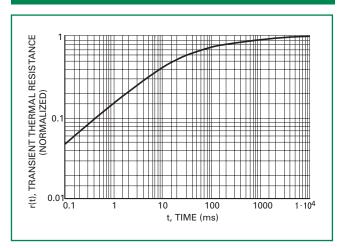
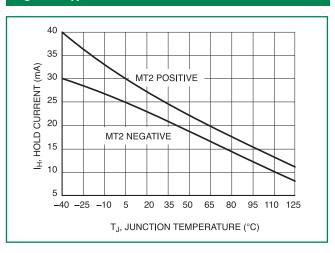



Figure 5. Typical Hold Current Variation

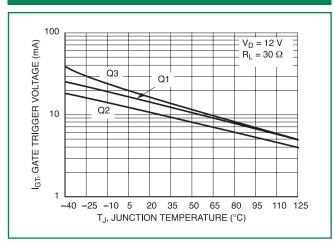


Figure 7. Typical Gate Trigger Voltage Variation

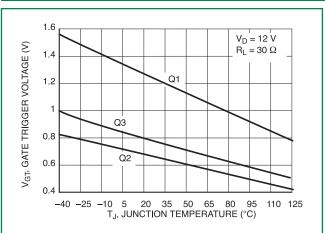


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

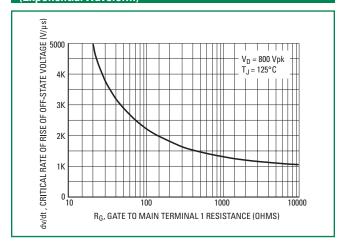


Figure 9. Critical Rate of Rise of Commutating Voltage

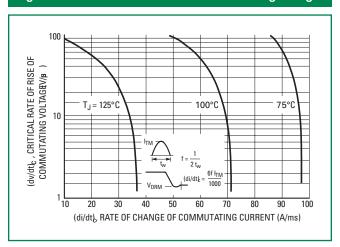
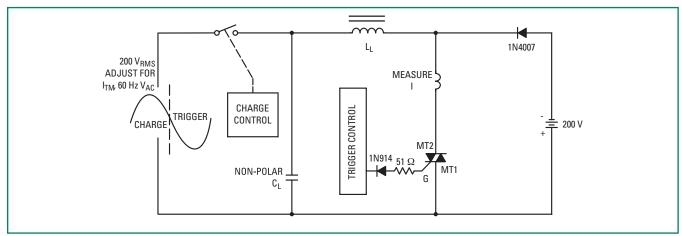



Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information