Product data sheet

1 General description

The BTS7203H is a dual channel Receiver Analog Front-End module (RX AFE) available in a leadframe HVQFN package.

The BTS7203H is designed for 5G mMIMO Infrastructure applications. The BTS7203H includes 2 independent receive channels with a low noise amplifier (LNA) with variable gain control. Each channel also has a switch for high-power TX signals.

The device is matched to 50 Ω and integrates harmonic and out-of-band filtering which minimizes the layout area in the application.

2 Features and benefits

- Operating frequency range 2.3 GHz 2.7 GHz
- 150 mW power dissipation per channel
- RX power gain 37 dB
- RX power gain attenuation step 6 dB
- Typical Noise Figure 1.3 dB
- High TX power handling 37 dBm (9 dB PAPR)
- Single-ended input /output RF ports matched to 50 Ω
- · Fast switching time between operation modes
- · ESD protection on all pins
- Leadframe HVQFN package 5.0 mm x 5.0 mm x 0.85 mm with 32 pins

3 Applications

- 5G mMIMO
- · Wireless Infrastructure

2.3 GHz - 2.7 GHz RX Analog Front-End IC

Quick reference data

Table 1.

f = 2.5 GHz; V_{CC} = 3.3 V, T_{case} = 50 °C; input and output 50 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
High ga	in RX mode; signal from ANT to I	RX_OUT				
I _{CC}	supply current		-	46	51	mA
G _p	power gain		35	36.7	38	dB
NF	noise figure		-	1.3	1.4	dB
IP3 _o	output third-order intercept point	2-tones at 10 MHz distance, P _i = -40 dBm each tone	22.5	25	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression		-25	-23	-	dBm
Low gai	n RX mode; signal from ANT to F	X_OUT				
I _{CC}	supply current		-	46	51	mA
Gp	power gain		29	31.2	32.5	dB
a _{step}	attenuation step		5.2	5.5	6.3	dB
NF	noise figure		-	1.5	1.7	dB
IP3 _o	output third-order intercept point	2-tones at 10 MHz distance, P _i = -40 dBm each tone	22	24	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression		-19	-17	-	dBm
TX mod	e; signal from ANT to TERM					
I _{CC}	supply current		-	5.9	6.5	mA
P _{i(AV)TX}	maximum average input power in	applied on ANT pin, 10 years, T _{case(AV)} = 99 °C [2]	34	-	-	dBm
TX mode ^[1]	applied on ANT pin, 10 seconds, T _{case} = 105 °C [3]	37	-	-	dBm	

CP-OFDM with 9 dB PAPR, BW = 100 MHz, QPSK modulated, SCS = 60 kHz, fully allocated

Ordering information

Table 2.

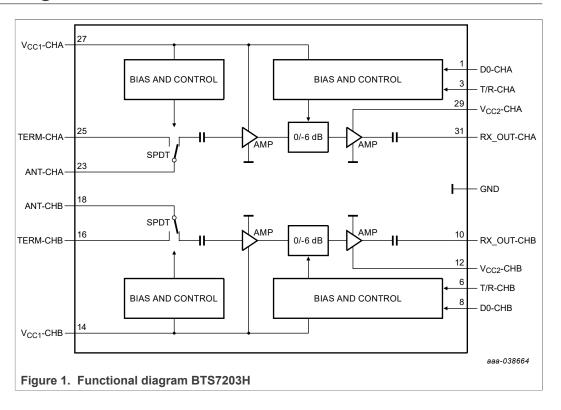
Type number	Orderable part	Package				
number		Name	Description	Version		
BTS7203H	BTS7203HHP	HVQFN32	Plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5.0 mm x 5.0 mm x 0.85 mm	SOT617-3		

Marking

Table 3.

Type number	Marking code
BTS7203H	7203H

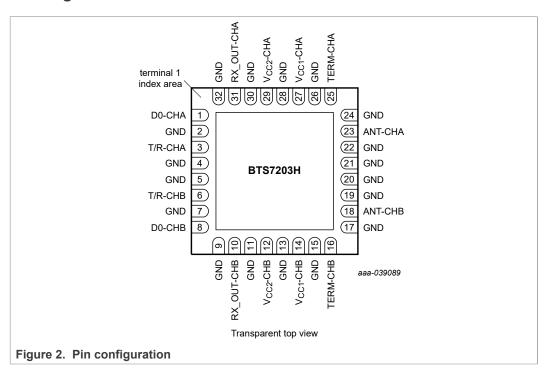
All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2021. All rights reserved.

T_{case(AV)} is an equivalent temperature that yields the same aging over life time as the expected temperature profile which includes temperatures up to 105 °C See <u>Table 7</u>

^[3]

2.3 GHz - 2.7 GHz RX Analog Front-End IC


7 Functional diagram

2.3 GHz - 2.7 GHz RX Analog Front-End IC

8 Pinning information

8.1 Pin diagram

8.2 Pin description

Table 4. Pin description

Pin	Symbol	Description			
1	D0-CHA	Select attenuation for channel A			
2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 20, 21, 22, 24, 26, 28, 30, and 32	GND	Ground reference			
3	T/R-CHA	Select RX mode / TX mode for channel A			
6	T/R-CHB	Select RX mode / TX mode for channel B			
8	D0-CHB	Select attenuation for channel B			
10	RX_OUT-CHB	RF output for channel B (50 Ω , single ended)			
12, 14	V _{CC} -CHB	Supply voltage for channel B			
16	TERM-CHB	Termination RF output for channel B (50 Ω , single ended, DC at 0 V)			
18	ANT-CHB	RF input for channel B (50 Ω , single ended, DC at 0 V)			
23	ANT-CHA	RF input for channel A (50 Ω , single ended, DC at 0 V)			
25	TERM-CHA	Termination RF output for channel A (50 Ω , single ended, DC at 0 V)			
27, 29	V _{CC} -CHA	Supply voltage for channel A			
31	RX_OUT-CHA	RF output for channel A (50 Ω , single ended)			
Die paddle	GND	Ground reference			

BTS7203H

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

2.3 GHz – 2.7 GHz RX Analog Front-End IC

9 Functional description

9.1 Modes of operation

Table 5. Modes of operation for channel A

T/R-CHA	D0-CHA	Mode of Operation
Low	Low	RX High gain mode for channel A
Low	High	RX 6 dB reduced-gain mode for channel A
High	Low/High	TX mode for channel A

Table 6. Modes of operation for channel B

T/R-CHB	D0-CHB	Mode of Operation
Low	Low	RX High gain mode for channel B
Low	High	RX 6 dB reduced-gain mode for channel B
High	Low/High	TX mode for channel B

2.3 GHz - 2.7 GHz RX Analog Front-End IC

10 Limiting values

Table 7. In accordance with the Absolute Maximum Rating System (IEC 60134)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.3	6	V
VDC _(ctrl_pins)	DC voltage on control pins	applied on control pins D0 and T/R	-0.3	3.45	V
VDC _(RF_pins)	DC voltage on RF pins	applied on both ANT, and both TERM, RF pins	0	0	V
P _{i(AV)RX}	average input power in RX mode ^[1]	applied on ANT pin, 24 hours, T _{case} = 105 °C	-	11	dBm
P _{i(AV)TX}	average input power in TX mode ^[1]	applied on ANT pin, 10 seconds, T _{case} = 105 °C	-	39	dBm
T _{stg}	storage temperature		-40	150	°C
Tj	junction temperature		-	150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM) according to ANSI/ESDA/JEDEC standard JS-001	-2	2	kV
		Charged Device Model (CDM) according to ANSI/ESDA/JEDEC standard JS-002	-500	500	V

^[1] CP-OFDM with 9 dB PAPR, BW = 100 MHz, QPSK modulated, SCS = 60 kHz, fully allocated

11 Recommended operating conditions

Table 8.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{oper}	operating frequency			2.3	-	2.7	GHz
Z ₀	characteristic impedance			-	50	-	Ω
V _{CC}	supply voltage	on pins V_{CC1} , and V_{CC2}	[1]	3.15	3.3	3.45	V
V _{IH}	HIGH-level input voltage	at pins D0, and T/R		1.2	1.8	2.5	V
V _{IL}	LOW-level input voltage	at pins D0, and T/R		0	-	0.6	V
T _{case}	case temperature	exposed die paddle at package bottom		-40	50	105	°C

^[1] channel A and channel B can be used independently

12 Thermal characteristics

Table 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-case)}	channel-junction to case thermal resistance	TX mode	-	49	-	K/W
		RX mode	_	55	-	K/W

BTS7203H

2.3 GHz - 2.7 GHz RX Analog Front-End IC

13 Characteristics

Table 10.

f = 2.5 GHz; V_{CC} = 3.3 V, T_{case} = 50 °C; input and output 50 Ω ; unless otherwise specified. Characteristics apply to each channel A and B separately.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
High gain R	K mode; signal from ANT to RX_C	UT				
I _{cc}	supply current		-	46	51	mA
Gp	power gain		35	36.7	38	dB
- P		f = 2.3 GHz to 2.7 GHz, T _{case} = -40 °C to 105 °C	34	-	40	dB
G _{flat}	gain flatness	in 200 MHz band	-	0.25	0.8	dB
NF	noise figure		-	1.3	1.4	dB
		f = 2.3 GHz to 2.7 GHz, T _{case} = -40 °C to 105 °C	-	-	1.7	dB
RLi	input return loss	f = 2.3 GHz to 2.7 GHz	16	20	-	dB
RLo	output return loss	f = 2.3 GHz to 2.7 GHz	13	16	-	dB
RL _{align(RX-TX)}	return loss alignment RX-TX	R_{TERM} = 50 Ω , f = 2.3 GHz to 2.7 GHz	15	-	-	dB
α _{isol(ch-ch)}	isolation channel to channel	f = 2.3 GHz to 2.7 GHz [1]	42	45	-	dB
G _{rel(f2/f0)}	relative gain (G _{f2} /G _{f0})	$f_0 = 2.3 \text{ GHz to } 2.7 \text{ GHz}, f_2 = 2 \text{ x } f_0$	-	-39	-25	dB
G _{rel(f3/f0)}	relative gain (G _{f3} /G _{f0})	$f_0 = 2.3 \text{ GHz to } 2.7 \text{ GHz}, f_3 = 3 \text{ x } f_0$	-	-44	-43	dB
α _{2Ho}	output second harmonic level	P _o = 0 dBm	-	-50	-47	dBm
α _{3Ho}	output third harmonic level	P _o = 0 dBm	-	-74	-70	dBm
IP3 _o	output third-order intercept point	2-tones at 10 MHz distance, P _i = -40 dBm each tone	22.5	25	-	dBm
		2-tones at 10 MHz distance, P _i = -40 dBm each tone, f = 2.3 GHz to 2.7 GHz, T _{case} = -40 °C to 105 °C	21	-	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression		-25	-23	-	dBm
K	stability factor	1 MHz to 20 GHz, T _{case} = -40 °C to 105 °C	1	-	-	-
Low gain RX	mode; signal from ANT to RX_O	UT				
I _{cc}	supply current		-	46	51	mA
Gp	power gain		29	31.2	32.5	dB
		f = 2.3 GHz to 2.7 GHz, T_{case} = -40 °C to 105 °C	28	-	34	dB
α_{step}	attenuation step		5.2	5.5	6.3	dB
G _{flat}	gain flatness	in 200 MHz band	-	0.25	8.0	dB
NF	noise figure		-	1.5	1.7	dB
		f = 2.3 GHz to 2.7 GHz, T _{case} = -40 °C to 105 °C	-	-	2	dB
RLi	input return loss	f = 2.3 GHz to 2.7 GHz	16	20	-	dB
RLo	output return loss	f = 2.3 GHz to 2.7 GHz	13	16	-	dB
RL _{align(RX-TX)}	return loss alignment RX-TX	R_{TERM} = 50 Ω , f = 2.3 GHz to 2.7 GHz	15	-	-	dB

2.3 GHz - 2.7 GHz RX Analog Front-End IC

Table 10. ...continued

f = 2.5 GHz; V_{CC} = 3.3 V, T_{case} = 50 °C; input and output 50 Ω ; unless otherwise specified. Characteristics apply to each channel A and B separately.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
α _{isol(ch-ch)}	isolation channel to channel	f = 2.3 GHz to 2.7 GHz [1]	45	47	-	dB
G _{rel(f2/f0)}	relative gain (G _{f2} /G _{f0})	$f_0 = 2.3 \text{ GHz to } 2.7 \text{ GHz}, f_2 = 2 \text{ x } f_0$	-	-37	-25	dB
G _{rel(f3/f0)}	relative gain (G _{f3} /G _{f0})	$f_0 = 2.3 \text{ GHz to } 2.7 \text{ GHz}, f_3 = 3 \text{ x } f_0$	-	-46	-44	dB
α _{2Ho}	output second harmonic level	$P_o = 0 \text{ dBm}$	-	-51	-48	dBm
α _{3Ho}	output third harmonic level	$P_o = 0 \text{ dBm}$		-72	-68	dBm
IP3 _o	output third-order intercept point	2-tones at 10 MHz distance, P _i = -40 dBm each tone	22	24	-	dBm
		2-tones at 10 MHz distance, P _i = -40 dBm each tone, f = 2.3 GHz to 2.7 GHz, T _{case} = -40 °C to 105 °C	21	-	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression		-19	-17	-	dBm
K	stability factor	1 MHz to 20 GHz, T _{case} = -40 °C to 105 °C	1	-	-	-
TX mode; si	gnal from ANT to TERM					
I _{cc}	supply current		-	5.9	6.5	mA
IL	insertion loss	from ANT to TERM	-	0.55	0.6	dB
RLi	input return loss	f = 2.3 GHz to 2.7 GHz	19	23	-	dB
RL_o	output return loss	f = 2.3 GHz to 2.7 GHz	17.5	20	-	dB
α _{isol(ANT-RX)}	isolation between ANT to RX_OUT	f = 2.3 GHz to 2.7 GHz	55	-	-	dB
$P_{i(AV)TX}$	Maximum average input power in TX mode ^[2]	applied on ANT pin, lifetime (10 yrs), T _{case(AV)} = 99 °C	34	-	-	dBm
Switching b	etween modes		1	-		
t _{sw(α)RX}	switching time RX attenuation		-	-	85	ns
t _{sw(RX-TX)}	switching from RX to TX	for the power transient at RX_OUT	-	-	100	ns
t _{sw(TX-RX)}	switching from TX to RX		-	-	1	μs

 $[\]rm G_p$ [ANT-CHA, RX_OUT-CHA] / $\rm G_p$ [ANT-CHB, RX_OUT-CHA] CP-OFDM with 9 dB PAPR, BW = 100 MHz, QPSK modulated, SCS = 60 kHz, fully allocated

T_{case(AV)} is an equivalent temperature that yields the same aging over life time as the expected temperature profile which includes temperatures up to 105 °C

2.3 GHz - 2.7 GHz RX Analog Front-End IC

14 Graphs

14.1 All modes

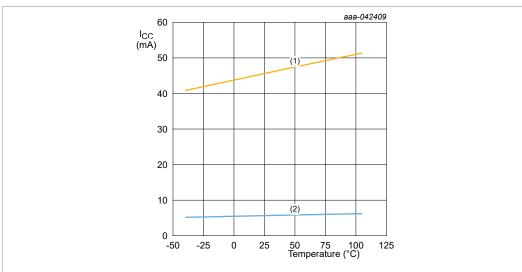


Figure 3. DC supply current versus temperature of a single channel

- $(1) = RX \mod e$
- (2) = TX/TXBP mode

14.2 High gain RX mode

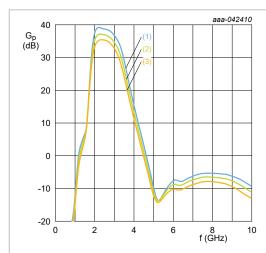
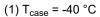



Figure 4. High gain RX mode, $\mathbf{G}_{\mathbf{p}}$ versus frequency over temperature

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

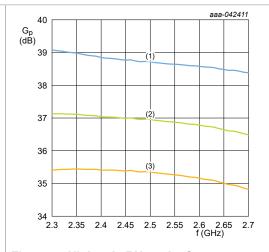


Figure 5. High gain RX mode, $\mathbf{G}_{\mathbf{p}}$ versus frequency over temperature

(1)
$$T_{case} = -40 \, ^{\circ}C$$

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

2.3 GHz - 2.7 GHz RX Analog Front-End IC

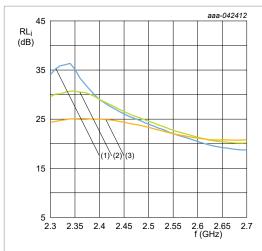


Figure 6. High gain RX mode, RL_i versus frequency over temperature

- (1) $T_{case} = -40 \, ^{\circ}C$
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) $T_{case} = 105 \, ^{\circ}C$

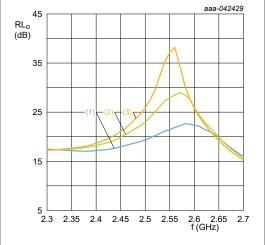


Figure 7. High gain RX mode, RL_o versus frequency over temperature

- (1) $T_{case} = -40$ °C
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) $T_{case} = 105 \, ^{\circ}C$

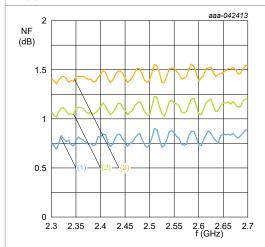


Figure 8. High gain RX mode, NF versus frequency over temperature

- (1) T_{case} = -40 °C
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) T_{case} = 105 °C

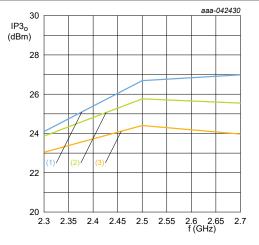


Figure 9. High gain RX mode, IP3_o versus frequency over temperature

- (1) $T_{case} = -40 \, ^{\circ}C$
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) T_{case} = 105 °C

2.3 GHz - 2.7 GHz RX Analog Front-End IC

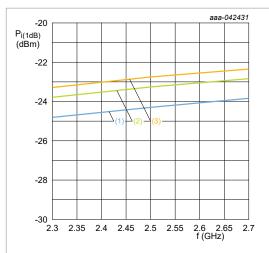


Figure 10. High gain RX mode, $P_{i(1dB)}$ versus frequency over temperature

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

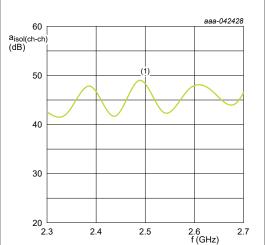


Figure 11. High gain RX mode, Channel Isolation versus frequency

(1)
$$T_{case} = 50 \, ^{\circ}C$$

14.3 Low gain RX mode

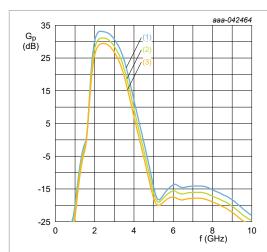


Figure 12. Low gain RX mode, G_p versus frequency over temperature

(1)
$$T_{case} = -40 \, ^{\circ}C$$

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

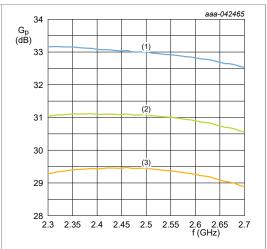


Figure 13. Low gain RX mode, G_p versus frequency over temperature

(1)
$$T_{case} = -40 \, ^{\circ}C$$

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

2.3 GHz - 2.7 GHz RX Analog Front-End IC

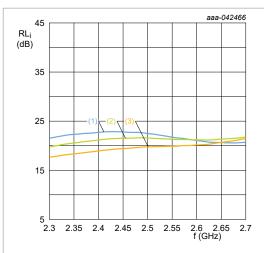


Figure 14. Low gain RX mode, RL_i versus frequency over temperature

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case} = 105 \, ^{\circ}C$$

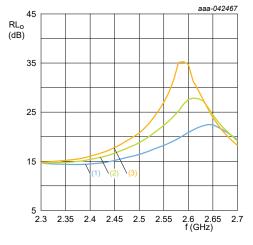


Figure 15. Low gain RX mode, RL_o versus frequency over temperature

(1)
$$T_{case} = -40$$
 °C

(3)
$$T_{case} = 105 \, ^{\circ}C$$

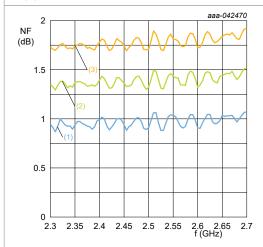


Figure 16. Low gain RX mode, NF versus frequency over temperature

(2)
$$T_{case} = 50 \, ^{\circ}C$$

(3)
$$T_{case}$$
 = 105 °C

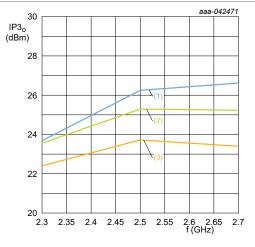


Figure 17. Low gain RX mode, IP3_o versus frequency over temperature

- (1) $T_{case} = -40 \, ^{\circ}C$
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) $T_{case} = 105 \, ^{\circ}C$

2.3 GHz - 2.7 GHz RX Analog Front-End IC

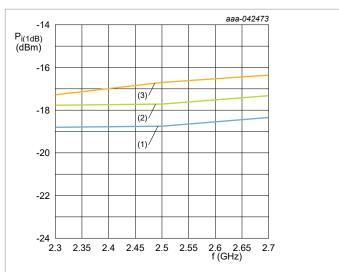


Figure 18. Low gain RX mode, Input $P_{i(1dB)}$ versus frequency over temperature

- (1) $T_{case} = -40 \, ^{\circ}C$
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) $T_{case} = 105 \, ^{\circ}C$

14.4 TX mode

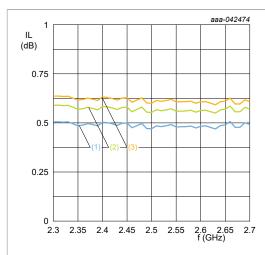


Figure 19. TX mode, α_{ins} versus frequency over temperature

(2)
$$T_{case} = 50 \, ^{\circ}C$$

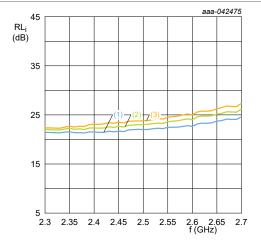


Figure 20. TX mode, RL_i versus frequency over temperature

- (1) $T_{case} = -40 \, ^{\circ}C$
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) T_{case} = 105 °C

2.3 GHz - 2.7 GHz RX Analog Front-End IC

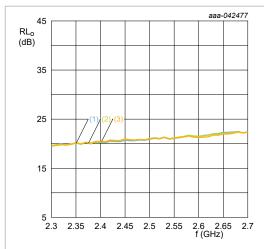


Figure 21. TX mode, RL_o versus frequency over temperature

- (1) T_{case} = -40 °C
- (2) $T_{case} = 50 \, ^{\circ}C$
- (3) $T_{case} = 105 \, ^{\circ}C$

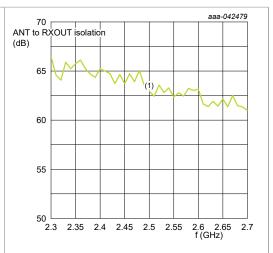


Figure 22. TX mode, ANT to RX_OUT isolation versus frequency

$$(1) = 50 \, ^{\circ}\text{C}$$

2.3 GHz - 2.7 GHz RX Analog Front-End IC

15 Application information

Table 11. Application schematic

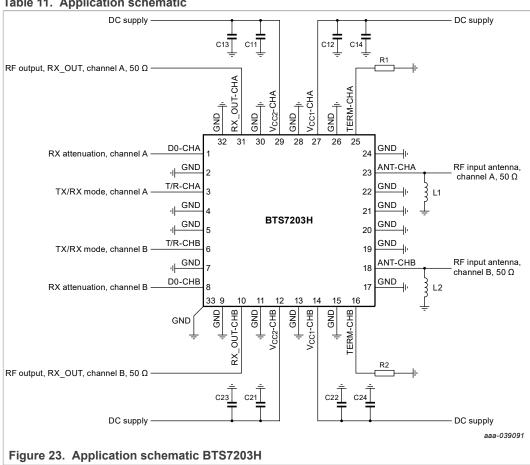
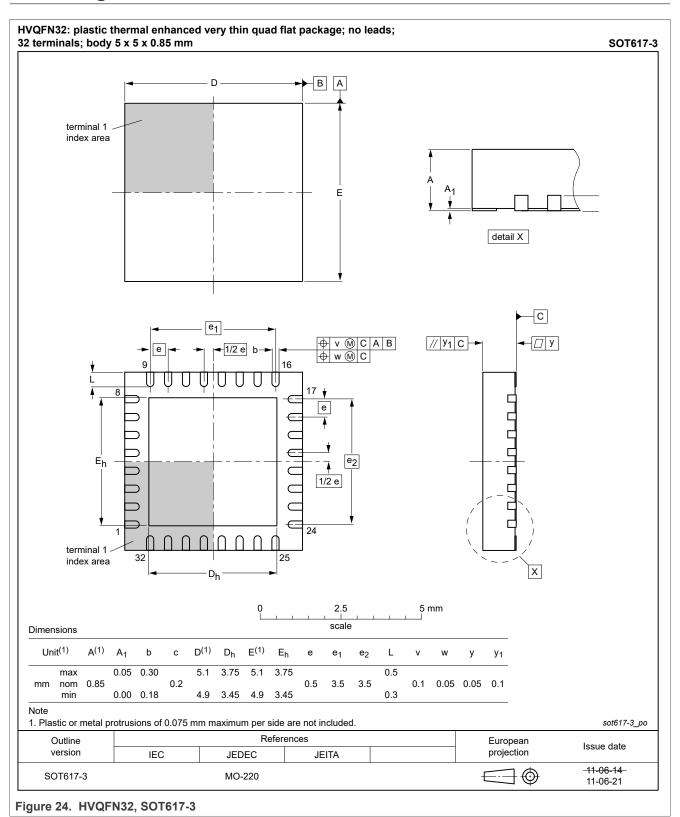



Table 12. List of components

Component	Description	Value	amount	Remarks
R1, and R2	load resistor	50 Ω, 50 W	2	must be able to withstand 34 dBm average power over lifetime
C11, C12, C21, and C22	capacitor	10 nF	4	as close as possible, less than 10 mm from IC
C13, C14, C23, and C24	capacitor	1 μF	4	as close as possible, less than 10 mm from IC
L1, and L2	inductor	19 nH	2	high-Q inductor, close to IC

2.3 GHz - 2.7 GHz RX Analog Front-End IC

16 Package outline

2.3 GHz - 2.7 GHz RX Analog Front-End IC

16.1 Footprint and solder information

NXP recommends by default to apply the soldering and footprint guidelines as are released in POD SOT617-3.

2.3 GHz - 2.7 GHz RX Analog Front-End IC

17 Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices. Such precautions are described in the *ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A* or equivalent standards.

18 Abbreviations

Table 13.

idble 13.				
Description				
amplifier				
antenna				
data line 0				
electrostatic discharge				
heat sink very thin quad flat no-leads				
low noise amplifier				
massive multiple-input multiple-output				
cyclic prefix orthogonal frequency division multiplexing				
peak to average power ratio				
quadrature phase shift keying				
sub carrier spacing				
single pull double throw				
termination				
transmit/receive mode				

19 Revision history

Table 14.

Document ID	Release date	Data sheet status	Change notice	Supersedes
BTS7203H v.7.1	20211012	Product data sheet	-	BTS7203H v.7
modification	added frequency setting to the G _p condition on both RX gain modes			
BTS7203H v.7	20211008	Product data sheet	-	BTS7203H v.6.1
modification	 changed status to Public Product data sheet changed footnote at α_{isol(ch-ch)} for both RX modes corrected the orderable part number 			
BTS7203H v.6.1	20210625	Preliminary data sheet	-	BTS7203H v.6
modification	added P _{i(AV)TX} parameter to the TX Characteristics table			

BTS7203H

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

2.3 GHz – 2.7 GHz RX Analog Front-End IC

Table 14. ...continued

Document ID	Release date	Data sheet status	Change notice	Supersedes	
BTS7203H v.6	20210615	Preliminary data sheet	-	BTS7203H v.5	
modification	added Graphics to the data sheet				
BTS7203H v.5	20210528	Preliminary data sheet	-	BTS7203H v.4	
modification	 changed Min, Max values on some parameters split Thermal resistance in a value for TX mode, and a value for RX mode added marking info changed status to Preliminary 				
BTS7203H v.4	20210430	Objective data sheet	-	BTS7203H v.3.1	
modification	 changed some values on characteristics removed condition on lifetime, and footnote on parameter P_{i(AV)TX} at Limiting values 				
BTS7203H v.3.1	20210317	Objective data sheet	-	BTS7203H v.3	
modification	 changed T_{case} from 50 °C to 105 °C for P_{i(AV)RX} at Limiting values added footnote to parameter P_{i(AV)TX} at Limiting values 				
BTS7203H v.3	20210311	Objective data sheet	-	BTS7203H v.2	
modification	 removed the exception on the ESD conditions on the ANT pins in Limiting values table adapted the Modes of operation tables adapted some characteristics values removed and adapted Switching mode conditions 				
BTS7203H v.2	20210108	Objective data sheet	-	BTS7203H v.1	
modification	changed Minimum, Typical, and Maximum values on many parameters				
BTS7203H v.1	20200903	Objective data sheet	-	-	

2.3 GHz - 2.7 GHz RX Analog Front-End IC

20 Legal information

20.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

BTS7203H

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

2.3 GHz - 2.7 GHz RX Analog Front-End IC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.