

C4D30120H

4th Generation 1200 V, 30 A Silicon Carbide Schottky Diode

Description

With the performance advantages of a Silicon Carbide (SiC) Schottky Barrier diode, power electronics systems can expect to meet higher efficiency standards than Si-based solutions, while also reaching higher frequencies and power densities. SiC diodes can be easily paralleled to meet various application demands, without concern of thermal runaway. In combination with the reduced cooling requirements and improved thermal performance of SiC products, SiC diodes are able to provide lower overall system costs in a variety of diverse applications.

Features

- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current / Forward Recovery Voltage
- Temperature-Independent Switching Behavior
- Increased Creepage / Clearance + HV-H3TRB Rugged

Applications

- Battery Chargers
- Solar & Renewable Energy Power Conversion
- Industrial Power Supplies
- Boost Diodes in PFC & DC-DC

Parameter	Symbol	Value	Unit	Test Conditions	Note	
Repetitive Peak Reverse Voltage	V _{RRM}	1200	- V			
DC Blocking Voltage	V _{DC}	1200	- V			
Continuous Forward Current	I _F	94	- - - A	T _J = 25 °C	Fig. 3	
		45		T _J = 135 °C		
		30		T _j = 155 °C		
Repetitive Peak Forward Surge Current	I -	121		$T_c = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Pulse}$		
		68		$T_c = 110 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Pulse}$		
Non-Repetitive Forward Surge		233	_	$T_c = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Pulse}$		
Current	FSM	209	-	$T_c = 110 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Pulse}$		
Power Dissipation P _{to}		441	- W	T _J = 25 °C T _J = 110 °C		
	P _{tot} -	tot 191				
$i^{2}t$ Value $\int i^{2}t$	[···	271	271 218 A ² s	$T_{c} = 25 \text{ °C}, t_{p} = 10 \text{ ms}$		
	j l ' t -	218		$T_{c} = 110 \text{ °C}, t_{p} = 10 \text{ ms}$		

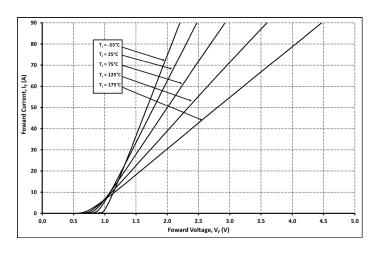
Maximum Ratings ($T_c = 25^{\circ}C$ unless otherwise specified)

Electrical Characteristics

Parameter	Symbol	Тур.	Max.	Units	Test Conditions	Note	
For word Valte ge	V _F <u>1.5</u> 2.2	1.5	1.8	– V	I _F = 30 A, T _J = 25 °C		
Forward Voltage		2.2	V 3	I _F = 30 A, T _J = 175 °C	—— Fig. 1		
Reverse Current		40	250	— μΑ	$V_{R} = 1200 \text{ V}, \text{ T}_{J} = 25 \text{ °C}$	- Fig. 2	
	R	70	450		V _R = 1200 V, T _J = 175 °C		
Total Capacitive Charge	Q _c	152		nC	$V_{R} = 800 \text{ V}, \text{ T}_{J} = 25 \text{ °C}$	Fig. 5	
		2,177			$V_{R} = 0 V, T_{J} = 25 °C, f = 1 MHz$		
Total Capacitance	C	136		pF	V_{R} = 400 V, T_{J} = 25 °C, f = 1 MHz	Fig. 6	
		100		_	$V_{R} = 800 \text{ V}, \text{ T}_{J} = 25 \text{ °C}, \text{ f} = 1 \text{ MHz}$		
Capacitance Stored Energy	E _c	44		μJ	V _R = 800 V	Fig. 7	

Note:

SiC Schottky Diodes are majority carrier devices, so there is no reverse recovery charge.


Thermal & Mechanical Characteristics

Parameter	Symbol	Value	Units	Note
Thermal Resistance, Junction to Case (Typ.)	$R_{_{\theta,JC}}$	0.34	°C / W	
Operating Junction & Storage Temperature	T_{J},T_{stg}	-55 to +175	°C	Fig. 8
Maximum Processing Temperature	T _{proc}	325	(10 min. Maximum

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Value
Human Body Model	НВМ	Class 3B (≥ 8000 V)
Charge Device Model	CDM	Class C3 (≥ 1000 V)

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

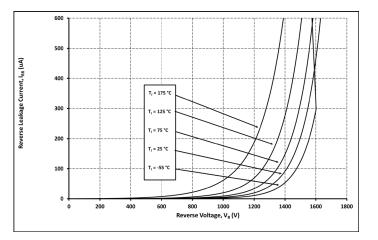
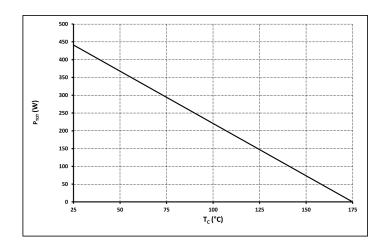
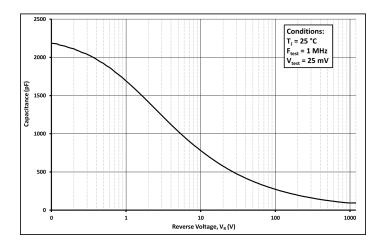
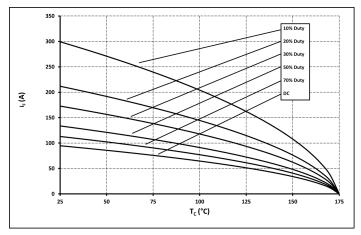


Figure 4. Power Derating

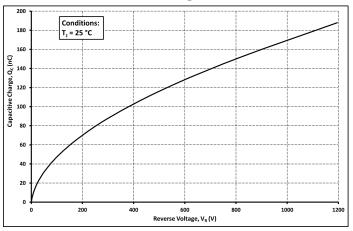

Figure 6. Capacitance vs. Reverse Voltage

Figure 3. Current Derating

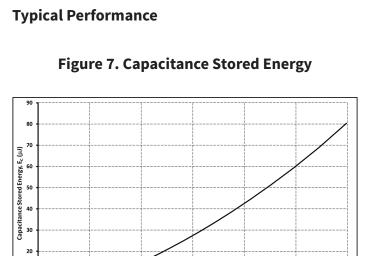
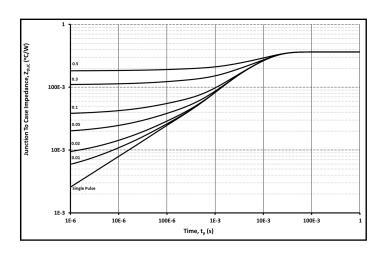


Figure 5. Total Capacitance Charge vs. Reverse Voltage

Rev. 0, OCTOBER 2021


C4D30120H

Reverse Voltage, V_R (V)

Figure 8. Transient Thermal Impedance

