

6th Generation 650 V, 6 A Silicon Carbide Schottky Diode

Description

With the performance advantages of a Silicon Carbide (SiC) Schottky Barrier diode, power electronics systems can expect to meet higher efficiency standards than Si-based solutions, while also reaching higher frequencies and power densities. SiC diodes can be easily paralleled to meet various application demands, without concern of thermal runaway. In combination with the reduced cooling requirements and improved thermal performance of SiC products, SiC diodes are able to provide lower overall system costs in a variety of diverse applications.

Package Types: QFN 8x8 Marking: C6D06065Q

Features

- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current / Forward Recovery Voltage
- Temperature-Independent Switching Behavior
- Low Profile Package with Low Inductance

Applications

- Enterprise Power, Server, & Telecom Power Supplies
- Switched Mode Power Supplies
- Industrial Power Supplies
- Boost Power Factor Correction
- Bootstrap Diode
- LLC Clamping

Maximum Ratings ($T_c = 25^{\circ}$ C Unless Otherwise Specified)

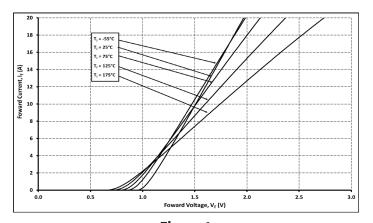
Parameter	Symbol	Value	Unit	Test Conditions	Notes	
Repetitive Peak Reverse Voltage	V _{RRM}	650	V			
DC Blocking Voltage	V _{DC}	650	V			
Continuous Forward Current		21		T _J = 25 °C	Fig. 3	
	I _F	11	A	T _J = 125 °C		
		6		T _J = 155 °C		
Non-Repetitive Peak Forward Surge Current	I _{FSM}	48		T _c = 25 °C, t _p = 10 ms, Half Sine Wave		
		42		$T_c = 110 ^{\circ}\text{C}, t_p = 10 \text{ms}, Half Sine Wave}$		
Power Dissipation	P _{tot}	62	14/	T _J = 25 °C	Fig. 4	
		27	W	T _J = 110 °C		
i²t Value	f +2.	11	A 2	$T_{c} = 25 {}^{\circ}\text{C}, t_{p} = 10 \text{ms}$		
	∫ i²t	8	A ² s	$T_c = 110 {}^{\circ}\text{C}, t_p = 10 \text{ms}$		

Electrical Characteristics

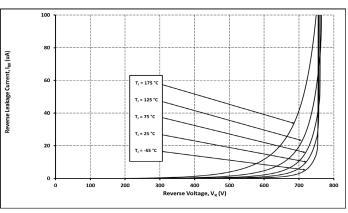
Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Notes	
Forward Voltage	V	1.27	1.5	V	I _F = 6 A, T _j = 25 °C	Fig. 1	
	V _F	1.37	1.6	V	I _F = 6 A, T _j = 175 °C		
Reverse Current		2	20		$V_{R} = 650 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$	Fig. 2	
	R	25	200	μΑ	$V_{R} = 650 \text{ V}, T_{j} = 175 \text{ °C}$		
Total Capacitive Charge	Q _c	22		nC	$V_{R} = 400 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$	Fig. 5	
Total Capacitance		393			$V_R = 0 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$		
	С	44		pF	$V_R = 200 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$	Fig. 6	
		36			$V_R = 400 \text{ V}, T_j = 25 \text{ °C}, f = 1 \text{ MHz}$		
Capacitance Stored Energy	E _c	3.5		μJ	V _R = 400 V	Fig. 7	

Notes:

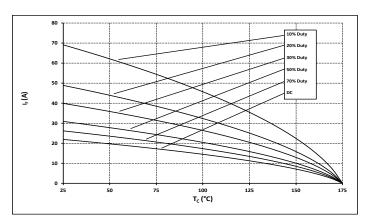
SiC Schottky Diodes are majority carrier devices, so there is no reverse recovery charge.

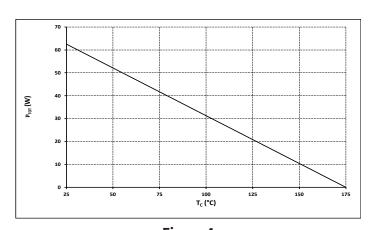

Thermal & Mechanical Characteristics

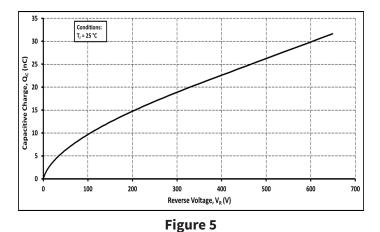
Parameter	Symbol	Value	Unit	Notes
Thermal Resistance, Junction to Case (Typ.)	R _{e, JC}	2.4	°C/W	
Junction Temperature	T _j	-55 to +175		
Case & Storage Temperature	T _c	-55 to +150	°C	
Maximum Processing Temperature	T _{PROC}	325		10 min max.


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Notes
Human Body Model	НВМ	Class 3B (≥ 8000 V)
Charge Device Model	CDM	Class C3 (≥ 1000 V)


Typical Performance


Figure 1 Forward Characteristics


Figure 2Reverse Characteristics

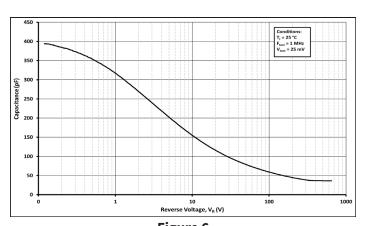
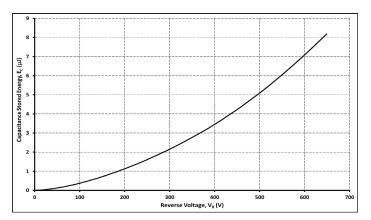

Figure 3Current Derating

Figure 4 Power Derating



Total Capacitance Charge vs. Reverse Voltage

Figure 6Capacitance vs. Reverse Voltage

Typical Performance

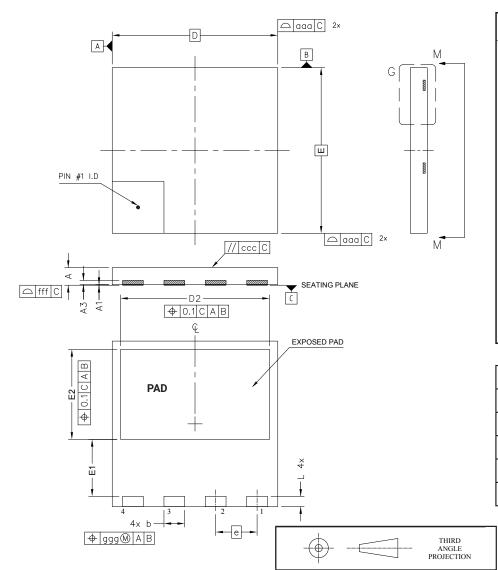
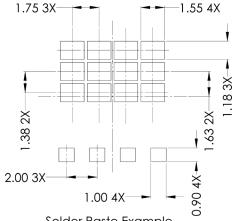


Figure 7Capacitance Stored Energy

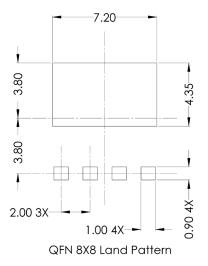
Package Dimensions & Pin-Out

Package: QFN 8x8

All dimensions are in mm.


DIM	MIN	NOM	MAX
A	0.75	0.85	0.95
A1	0.00		0.05
A3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
e	:	2.00 BSC	:
L	0.40	0.50	0.60
aaa		0.10	
ggg		0.05	
ccc		0.05	
fff		0.05	

5


Pin	Definition
1	N/C
2	N/C
3	Anode
4	Anode
PAD	Cathode

Recommended Solder Pad Layout

Learn more about recommended soldering profiles in this application note.

Solder Paste Example
Based on 5mil thick stencil
70% printed solder coverage by thermal pad area

Product Ordering Information

Order Number	Packing Type
C6D06065Q-TR	Tape & Reel

Learn more about power device packing & shipment information in this application note.

REACh, RoHS, and Halogen-Free compliance documentation available for this product.