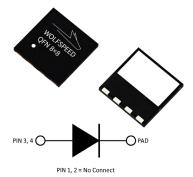


C6D08065Q


6th Generation 650 V, 8 A Silicon Carbide Schottky Diode

Description

With the performance advantages of a Silicon Carbide (SiC) Schottky Barrier diode, power electronics systems can expect to meet higher efficiency standards than Si-based solutions, while also reaching higher frequencies and power densities. SiC diodes can be easily paralleled to meet various application demands, without concern of thermal runaway. In combination with the reduced cooling requirements and improved thermal performance of SiC products, SiC diodes are able to provide lower overall system costs in a variety of diverse applications.

- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current / Forward Recovery Voltage
- Temperature-Independent Switching Behavior
- Low Profile Package with Low Inductance

Package Types: QFN 8x8 Marking: C6D08065Q

Applications

- Enterprise Power, Server, & Telecom Power Supplies
- Switched Mode Power Supplies
- Industrial Power Supplies
- Boost Power Factor Correction
- Bootstrap Diode
- LLC Clamping

Maximum Ratings ($T_c = 25^{\circ}C$ Unless Otherwise Specified)

Parameter	Symbol	Value	Unit	Test Conditions	Notes	
Repetitive Peak Reverse Voltage	V _{RRM}	650	v			
DC Blocking Voltage	V _{DC}	650	V			
		28		T _J = 25 °C		
Continuous Forward Current	I _F	14	A	T _J = 125 °C	Fig. 3	
		8		T _J = 155 °C		
Non-Repetitive Peak Forward Surge Current	I _{FSM}	55		$T_c = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$		
		51		$T_c = 110 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$		
Power Dissipation	P _{tot}	83	W	T _J = 25 °C	Fig. 4	
		36		T _J = 110 °C		
i²t Value	∫i²t	15	A ² s	$T_{c} = 25 \text{ °C}, t_{p} = 10 \text{ ms}$		
		13		$T_{c} = 110 \text{ °C}, t_{p} = 10 \text{ ms}$		

© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Electrical Characteristics

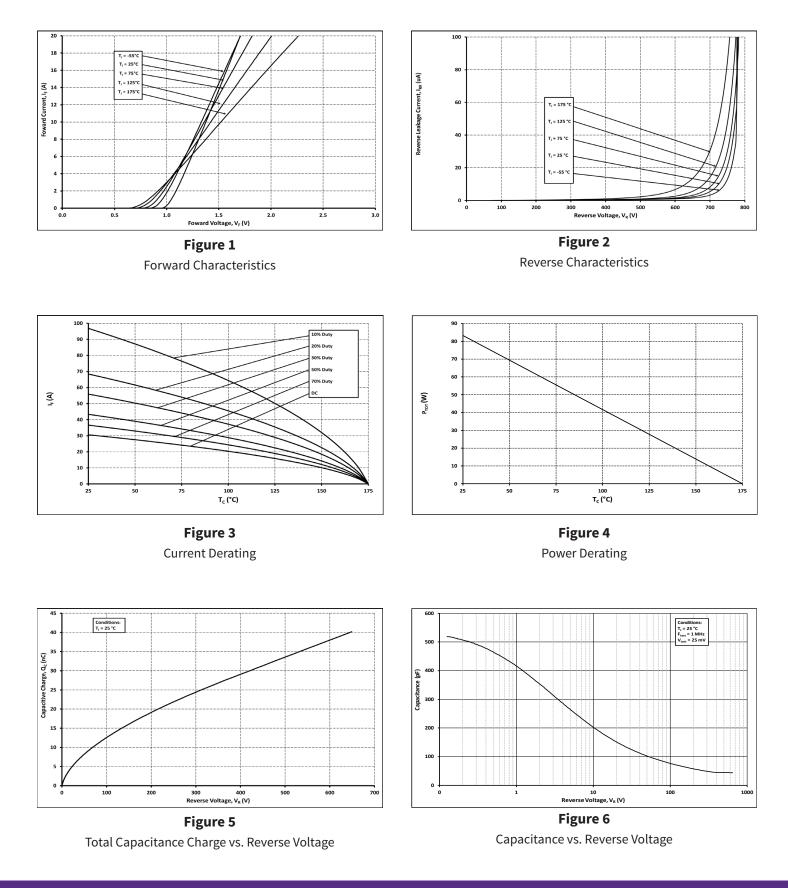
Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Notes	
Forward Voltage	V	1.27	1.5	V	I _F = 8 A, T _j = 25 °C	Fig. 1	
	V _F	1.37	1.6		I _F = 8 A, T _j = 175 °C	Fig. 1	
Reverse Current		2	20	μA	V _R = 650 V, T _j = 25 °C	Fig. 2	
	R	15	200		V _R = 650 V, T _j = 175 °C		
Total Capacitive Charge	Q _c	29		nC	$V_{R} = 400 \text{ V}, \text{ T}_{j} = 25 \text{ °C}$	Fig. 5	
Total Capacitance		518		pF	$V_{R} = 0 V, T_{j} = 25 °C, f = 1 MHz$		
	С	56			$V_{R} = 200 \text{ V}, \text{ T}_{j} = 25 \text{ °C}, \text{ f} = 1 \text{ MHz}$	Fig. 6	
		45			$V_{R} = 400 \text{ V}, \text{ T}_{j} = 25 \text{ °C}, \text{ f} = 1 \text{ MHz}$		
Capacitance Stored Energy	E _c	4.4		μJ	V _R = 400 V	Fig. 7	

Notes:

SiC Schottky Diodes are majority carrier devices, so there is no reverse recovery charge.

Thermal & Mechanical Characteristics

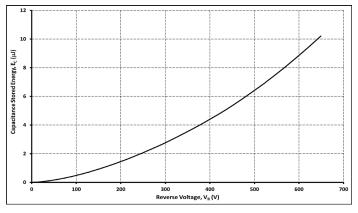
Parameter	Symbol	Value	Unit	Notes
Thermal Resistance, Junction to Case (Typ.)	R _{e, JC}	1.8	°C / W	
Junction Temperature	Tj	-55 to +175		
Case & Storage Temperature	T _c	-55 to +150	°C	
Maximum Processing Temperature	T _{PROC}	325		10 min max.


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Notes
Human Body Model	НВМ	Class 3B (≥ 8000 V)
Charge Device Model	CDM	Class C3 (≥ 1000 V)

Rev. 0, December 2021

Typical Performance


Rev. 0, December 2021

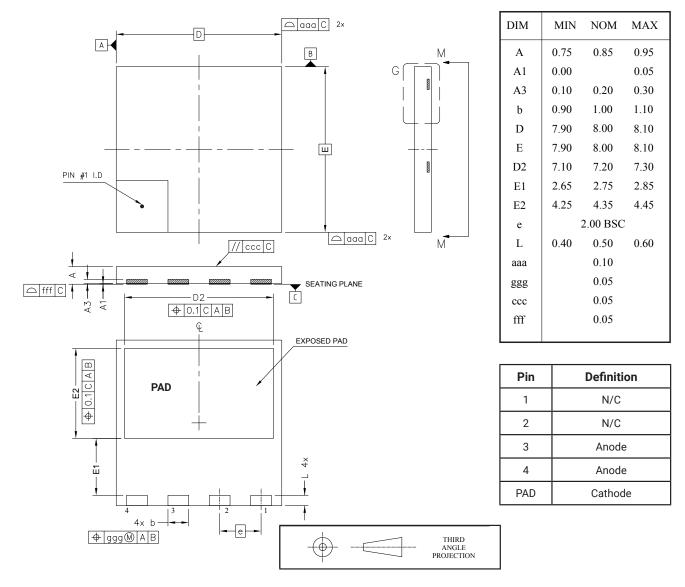
4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Typical Performance

Figure 7 Capacitance Stored Energy

Rev. 0, December 2021


© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed[®] and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

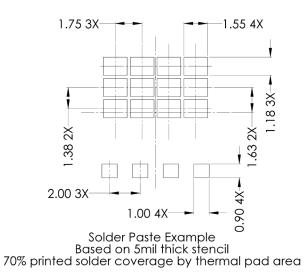
C6D08065Q

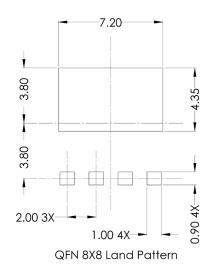
Package Dimensions & Pin-Out

Package: QFN 8x8

All dimensions are in mm.

5


© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.


C6D08065Q

Recommended Solder Pad Layout

Learn more about recommended soldering profiles in this application note.

Product Ordering Information

Order Number	Packing Type
C6D08065Q-TR	Tape & Reel

Learn more about power device packing & shipment information in this application note.

REACh, RoHS, and Halogen-Free compliance documentation available for this product.

Rev. 0, December 2021