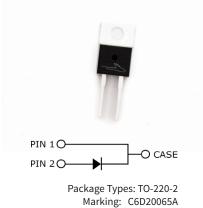


C6D20065A


6th Generation 650 V, 20 A Silicon Carbide Schottky Diode

Description

With the performance advantages of a Silicon Carbide (SiC) Schottky Barrier diode, power electronics systems can expect to meet higher efficiency standards than Si-based solutions, while also reaching higher frequencies and power densities. SiC diodes can be easily paralleled to meet various application demands, without concern of thermal runaway. In combination with the reduced cooling requirements and improved thermal performance of SiC products, SiC diodes are able to provide lower overall system costs in a variety of diverse applications.

Features

- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current / Forward Recovery Voltage
- Temperature-Independent Switching Behavior

Applications

- Industrial Switched Mode Power Supplies
- Uninterruptible & AUX Power Supplies
- Boost for PFC & DC-DC Stages
- Solar Inverters

Maximum Ratings ($T_c = 25^{\circ}C$ Unless Otherwise Specified)

Parameter	Symbol	Value	Unit	Test Conditions	Notes	
Repetitive Peak Reverse Voltage	V _{RRM}	650	v			
DC Blocking Voltage	V _{DC}	650	V			
		66		T _J = 25 °C		
Continuous Forward Current	I _F	33		T _J = 125 °C	Fig. 3	
		21		T _j = 150 °C		
Repetitive Peak Forward Surge Current		75		$T_c = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$		
	FRM	42	А	$T_c = 110 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$		
Non-Repetitive Forward Surge Current		125		$T_c = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$	Fig. 8	
	FSM	99		$T_c = 110 \text{ °C}, t_p = 10 \text{ ms}, \text{Half Sine Wave}$		
Non-Repetitive Peak Forward	orward I,475	1,475		$T_{c} = 25 \text{ °C}, t_{p} = 10 \mu s, \text{ Pulse}$		
Surge Current			$T_{c} = 110 \text{ °C}, t_{p} = 10 \mu\text{s}, \text{Pulse}$			
Power Dissipation	P _{tot}	166		T _J = 25 °C	Fig. 4	
		72	W	T _J = 110 °C		
i²t Value	∫i²t	83	A ² s	$T_{c} = 25 \text{ °C}, t_{p} = 10 \text{ ms}$		
		51		$T_{c} = 110 \text{ °C}, t_{p} = 10 \text{ ms}$		

Rev. 0, AUGUST 2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Electrical Characteristics

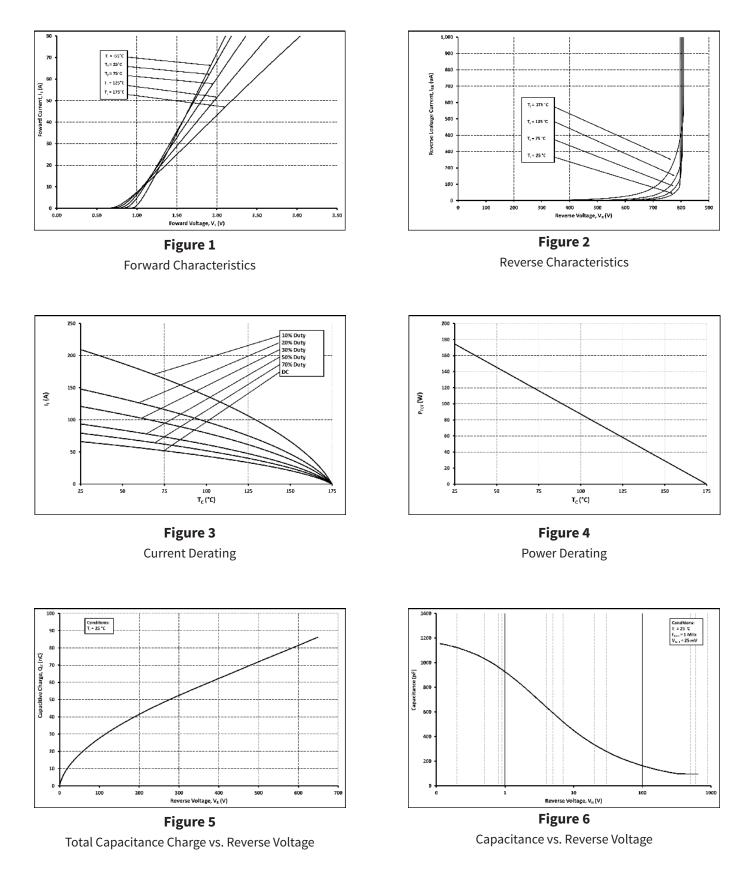
Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Notes	
Forward Voltage	N	1.27	1.5	V	I _F = 20 A, T _j = 25 °C		
	V _F	1.37	1.6		I _F = 20 A, T _j = 175 °C	Fig. 1	
Reverse Current		5	80	μA	V _R = 650 V, T _j = 25 °C	Fig. 2	
	I _R	40	400		V _R = 650 V, T _j = 175 °C		
Total Capacitive Charge	Q _c	62		nC	V _R = 400 V, T _j = 25 °C	Fig. 5	
Total Capacitance		1,153		pF	$V_{R} = 0 V, T_{j} = 25 °C, f = 1 MHz$		
	С	120			$V_{R} = 200 \text{ V}, \text{ T}_{j} = 25 \text{ °C}, \text{ f} = 1 \text{ MHz}$	Fig. 6	
		96			$V_{R} = 400 \text{ V}, \text{ T}_{j} = 25 \text{ °C}, \text{ f} = 1 \text{ MHz}$		
Capacitance Stored Energy	E _c	9.5		μJ	V _R = 400 V	Fig. 7	

Notes:

SiC Schottky Diodes are majority carrier devices, so there is no reverse recovery charge.

Thermal & Mechanical Characteristics

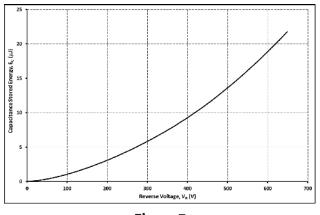
Parameter	Symbol	Value	Unit	Notes
Thermal Resistance, Junction to Case (Typical)	R _{θ, JC (TYP)}	0.67	0C (M)	
Thermal Resistance, Junction to Case (Maximum)	R _{0, JC (MAX)}	0.86	− °C / W	
Junction Temperature	Tj	-55 to +175		
Case & Storage Temperature	T _c	-55 to +175	°C	
Maximum Processing Temperature	T _{PROC}	325		10 min max.
TO 200 Mounting Toursus		1	Nm	M3 Screw
TO-220 Mounting Torque		8.8	lbf-in	6-32 Screw


Electrostatic Discharge (ESD) Classifications

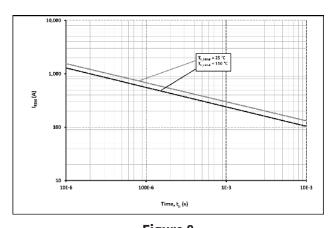
Parameter	Symbol	Notes
Human Body Model	НВМ	Class 3B (≥ 8000 V)
Charge Device Model	CDM	Class C3 (≥ 1000 V)

Rev. 0, August 2022

Typical Performance


Rev. 0, August 2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power


© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

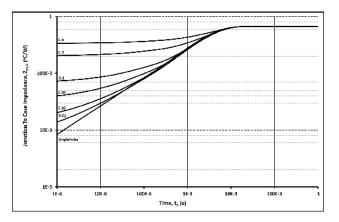
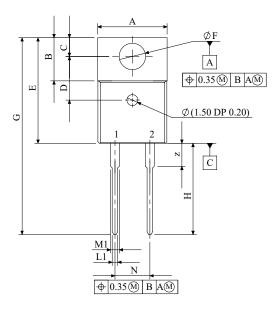

Typical Performance

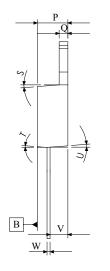
Figure 7 Capacitance Stored Energy

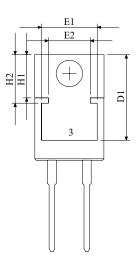
Figure 8 Non-Repetitive Peak Forward Surge Current vs. Pulse Duraion (Sinusouidal Waveform)

Figure 9 Transient Thermal Impedance

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed[®] and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.


C6D20065A




Package Dimensions & Pin-Out

Package: TO-220-2

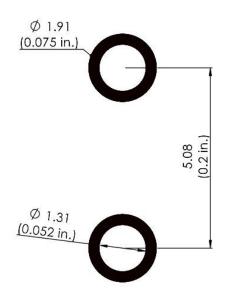
All dimensions are in mm.

GVMDOI			
SYMBOL	MIN (mm)	MAX (mm)	
A	9.677	10.414	
В	5.969	6.477	
C	2.540	3.048	
D	5.664	8.560	
D1	12.450) REF	
E	14.986	15.621	
E1	8.120	REF	
E2	6.100	REF	
F	3.632	3.886	
G	28.067	29.134	
Н	12.700	13.970	
H1	6.223 REF		
H2	7.040	REF	
L1	0.635	0.914	
M1	1.143	1.397	
N	4.953	5.207	
Р	4.191	4.699	
Q	1.219	1.372	
S	3°	6°	
Т	3°	6°	
U	3°	6°	
V	2.388	2.794	
W	0.356	0.635	
W1	0.356	0.520	
X	3°	5.5°	
Y	9.779	10.414	
Z	3.302	3.810	

1	CATHODE		
2	ANODE		
3	CATHODE		

NOTE

- 1. ALL METAL SURFACES ARE TIN PLATED (MATTE), EXCEPT AREA OF CUT.
- 2. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 3. ALL DIMENSIONS ARE LISTED IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 4. PACKAGE BURR FLASH SIZE (0.5 mm) IS NOT INCLUDED IN THE DIMENSIONS


Rev. 0, August 2022

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.

Recommended Solder Pad Layout

Primary dimensions shown in mm. Learn more about recommended soldering profiles in <u>this application note.</u>

Product Ordering Information

Order Number	Packing Type
C6D20065A	Tube

Learn more about power device packing & shipment information in this application note.

REACh, RoHS, and Halogen-Free compliance documentation available for this product.

Rev. 0, August 2022

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice.