CDM10V-3 #### 0-10V Dimming Solution #### **Feature list** - Simplest 0-10 V design on the market. CDM10V-3 comes with following key settings: - 1kHz PWM frequency - 200µA Dimmer/Resistor Bias current - 1% minimum Duty-Cycle - Wide input V_{cc} range from 11 to 25 V - Replaces many external components with a single chip reducing BOM and PCB space - Minimum variation from device to device ## **Potential Applications** - LED Drivers needing 0-10 V Dimming Circuits - Industrial and Commercial Dimmable Applications: Luminaires, Troffers, Downlights, Sconces, Undercabinet, Office Lighting, Signage applications, Dali applications | Product Type | Package | |--------------|---------| | CDM10V-3 | SOT23-6 | #### **Product validation** # **Description** CDM10V-3 is a fully integrated 0-10 V dimming interface IC and comes in a SOT-23-6 package to cover space requirements on small PCBs. The device is targeted for various dimming applications in lighting. The IC can be used to transmit analog voltage based signals from a 0-10 V dimmer or potentiometer to the dimming or PWM input of a lighting controller IC in the form of a 5 mA current based PWM signal to drive an external opto-coupler. It replaces many components in a traditional solution and reduces BOM and PCB space significantly. The CDM10V-3 IC outputs a 1 - 100% PWM current signal at 1 kHz with an amplitude value of 5 mA. Embedded digital signal processing maintains minimum variations from device to device. ## **CDM10V-3** # 0-10V Dimming Solution # Table of contents ## **Table of contents** | | Feature list | 1 | |---|---|----| | | Potential Applications | 1 | | | Product validation | 1 | | | Description | 1 | | | Table of contents | 2 | | 1 | Block diagram reference | 3 | | 2 | Pin configuration | 3 | | 3 | Functional description | 2 | | 4 | Electrical characteristics and parameters | 7 | | 5 | Package dimensions | 8 | | 6 | References | 10 | | | Revision history | 10 | | | Trademarks | 11 | 2 **Block diagram reference** # 1 Block diagram reference Figure 1 Block Diagram of the CDM10V-3 # 2 Pin configuration Table 1 Pin configutation | | <u> </u> | | |-----|-------------------|--------------------------------------| | Pin | Name | Function | | 1 | V _{cc} | Input supply voltage | | 2 | GND | GND | | 3 | l _{out} | PWM output current | | 4 | NC | GND | | 5 | NC | GND | | 6 | R _{dim+} | Dimmer current output /Voltage sense | **Functional description** #### **Functional description** 3 #### **Typical Application Circuit** Figure 2 **Typical Application Circuit** Note: The Diode marked with * is for the protection of the R_{dim+} -Pin when active dimming is used. This is because the voltage on this Pin is not allowed to be higher than V_{CC} +0.5V. It is advised to use a low leakage, low reverse current Schottky-Diode in order to not influence the dimming performance (e.g. MMSD301T1G). The capacitor connected to the $R_{\text{dim+}}$ -Pin reduces the amount of coupled noise to the dimming signal. Note: The size of this capacitance should be in the range of 2.2 - 10 nF (typ. 4.7 nF), where a small capacitor allows steeper edges of the dimming signal, a larger capacitor enhances the noise reduction. #### **Recommended cooling area** In order to guarantee the full functionality of the CDM10V-3 device, the required cooling area has to be selected according to the graph in Figure 3. ## **Functional description** Figure 3 Cooling area over ambient temperature CDM10V-3 ## **Functional description** ## **Dimming Characteristic** Table 2 PWM Output current referring to R_{dim+}-Pin Voltage | R _{dim+} | l _{out} | |---|------------------| | <1 V | 1% Duty-Cycle | | 1 - 9 V | 1100% (@ 9V) | | >9V (max. applicable Voltage: V _{cc}) | Always active | Figure 4 Dimming Characteristic **Electrical characteristics and parameters** # 4 Electrical characteristics and parameters Table 3 Absolute Maximum Ratings | Pin Name | | Values | Unit | Note or Test
Condition | | |----------|-------------------|--------|-----------------------|---------------------------|--| | | Min. | Max. | | | | | 1 | V _{cc} | 11 | 25 | V | | | 2 | GND | 0 | 0 | V | Point of reference | | 3 | l _{out} | -0.5 | 3.63 | V | Depending on the optocupler voltage @ 5mA | | 4 | NC | -0.25 | 0.1 | V | Connect to GND during operation | | 5 | NC | -0.25 | 0.1 | V | Connect to GND during operation | | 6 | R _{dim+} | -0.5 | V _{CC} + 0.5 | V | An applied voltage above max value leads to the destruction of the device. Also valid if V _{CC} is 0 V. | Absolute maximum ratings (*Table 3*) are defined as ratings which when being exceeded may lead to destruction of the integrated circuit. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. These values are not tested during production test. **Table 4 Electrical Characteristics** | Parameter | Symbol | Values | | | Unit | Note or Test | |--------------------------------|------------------|--------------------------|--|--|------|--| | | | Min. | Тур. | Max. | | Condition | | Input Voltage | V _{in} | 11 | | 25 | V | Operating Voltage | | Junction Temperature
Range | Т | -40 | | 135 | °C | | | Ambient Temperature
Range | T _A | -40 | | 105 | °C | | | Power Dissipation | P _{tot} | 6.05 @ 1%
duty cycle; | 130 @ 100% duty
cycle
54 @ 50% duty
cycle | 160 @
100%
PWM &
25 V _{in} | mW | Dimmer current
included | | Current Consumption | Icc | | | 1 | mA | Current
Consumption of
the IC for self
supply | | Output Current for Dimmer | I _{dim} | -10% | 200 | +10% | μΑ | Current flow out of R _{dim+} -Pin | | Output Current for Optocoupler | l _{out} | -10% | 5 | +10% | mA | | ## Package dimensions Table 4 Electrical Characteristics (continued) | Parameter | Symbol Values | | | Unit | Note or Test | | |--------------------|-------------------|------|------|------|--------------|--| | | - | Min. | Тур. | Max. | | Condition | | Dimming accuracy | | -3 | | +3 | % | With active
dimming incl. all
variations | | PWM frequency | f _{PWM} | -6% | 1000 | +6% | Hz | | | Min. duty cycle | PW _{PWM} | -0.2 | 1 | +0.2 | % | Percentage of the pulse width | | Wake-up Time | t _w | | | 40 | μs | Time from V _{CC} = 11 V to first output current | | ESD capability HBM | V _{HAB} | | | 1500 | V | according to
ANSI/ESDA/JEDEC
JS-001 | | ESD capability CDM | V _{CDM} | | | 500 | | according to
JESD22 C101 | # 5 Package dimensions #### **Package Drawings** Figure 5 Package Drawings ## Package dimensions #### **Footprint** Figure 6 Footprint #### **Packing Description** # **Packing Type**Tape and Reel Ø Reel: 180 Pieces / Reel: 3000 Reels / Box: 1 Figure 7 Packing #### **CDM10V-3** ## 0-10V Dimming Solution References # 6 References Additional support material can be found under the following link. #### **Related information** http://www.infineon.com/CDM10V # **Revision history** | Document version | Date of release | Description of changes | | |------------------|-----------------|------------------------|--| | 1.0 | 03.07.2017 | Initial Version | | | | | • | |