

RF SWITCH CG2163X3

Broadband SPDT RF Switch

DESCRIPTION

 The CG2163X3 is a GaAs MMIC SPDT(<u>Single Pole</u> <u>Double</u> <u>Throw</u>) switch which was developed for 2.4 GHz and 6 GHz dual-band wireless LAN

FEATURES

- Control voltage : VC(H) = 1.8 to 5.0 V (3.0V TYP.) VC(L) = -0.2 to 0.2 V (0V TYP.)
- Low insertion loss : L_{ins}1 = 0.40 dB TYP. @ f = 2.4 to 2.5 GHz L_{ins}2 = 0.50 dB TYP. @ f = 4.9 to 6.0 GHz
- High isolation : ISL1 = 40 dB TYP. @ f = 2.4 to 2.5 GHz ISL2 = 31 dB TYP. @ f = 4.9 to 6.0 GHz
- Power handling : $P_{in(1db)} = +33 \text{ dBm TYP.}$ @ f = 2.5 GHz VC(H) = 3.0 V, VC(L) = 0 V $P_{in(1db)} = +32 \text{ dBm TYP.}$ @ f = 6.0 GHz, VC(H) = 3.0 V, VC(L) = 0 V

PACKAGE

 6-pin Thin SON Package (XS03) (1.5mm x 1.5mm x 0.37mm)

APPLICATIONS

 Dual-band wireless LAN (IEEE802.11a/b/g/n/ac)

Part Number	Order Number	Package	Marking	Description
CG2163X3	CG2163X3-C2	6-pin plastic TSON (Pb-Free)	C06	 Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape MOQ 10 kpcs/reel
CG2163X3-EVAL	CG2163X3-EVAL			 Evaluation Board with DC block capacitors, power supply bypass capacitors, and RF and DC connectors MOQ 1

ORDERING INFORMATION

PIN CONFIGURATION AND INTERNAL BLOCK DIAGRAM

6

5

4

Pin No.	Pin Name
1	GND
2	VC2
3	RF2
4	RF1
5	VC1
6	RFC

Remark Exposed pad : GND

TRUTH TABLE

VC1	VC2	RFC-RF1	RFC-RF2
High	Low	OFF	ON
Low	High	ON	OFF

ABSOLUTE MAXIMUM RATINGS

 $(TA = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Rating	Unit
Control Voltage	VC	6.0 ^{Note 1}	V
Input Power	Pin	+33.5 ^{Note 2}	dBm
Operating Ambient Temperature	T _A	-45 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +150	°C

Note 1. |VC1 - VC2|≤6.0V

2. 3.0V≤|VC1 - VC2|≤5.0V

RECOMMENDED OPERATING RANGE

 $(TA = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	f1	2.4	-	2.5	GHz
	f2	4.9	-	6.0	GHz
Switch Control Voltage (H)	VC(H)	+1.8	+3.0	+5.0	V
Switch Control Voltage (L)	VC(L)	-0.2	0	+0.2	V

ELECTRICAL CHARACTERISTICS

(TA=+25°C, VC(H)=3.0V, VC(L)=0V, Zo=50Ω, DC Block Capacitance=4pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	L _{ins} 1	f = 2.4 to 2.5 GHz	-	0.40	0.60	dB
	L _{ins} 2	f = 4.9 to 6.0 GHz	-	0.50	0.80	dB
Isolation	ISL1	f = 2.4 to 2.5 GHz	37	40	-	dB
	ISL2	f = 4.9 to 6.0 GHz	28	31	-	dB
Return Loss	RL1	f = 2.4 to 2.5 GHz	-	15	-	dB
	RL2	f = 4.9 to 6.0 GHz	-	15	-	dB
1 dB Compression Point Note	P _{in(1dB)}	f = 2.4 to 2.5 GHz, VC(H)=1.8V, VC(L)=0V	-	+29	-	dBm
		f = 2.4 to 2.5 GHz, VC(H)=3.0V, VC(L)=0V	-	+33	-	dBm
		f = 4.9 to 6.0 GHz, VC(H)=1.8V, VC(L)=0V	-	+26	-	dBm
		f = 4.9 to 6.0 GHz VC(H)=3.0V, VC(L)=0V	-	+32	-	dBm
3rd Order Input Intercept Point	IIP3	f = 2.5GHz 2-tone 5MHz Spacing	-	+55	-	dBm
Error Vector Magnitude	EVM	802.11a, 64QAM, 54Mbps Pin≤ + 22dBm	-	2.5	-	%
		802.11g, 64QAM, 54Mbps Pin≤ + 25dBm	-	2.5	-	%
Switch Control Speed	t _{sw}	50% CTL to 90/10%	-	80	-	ns
Switch Control Current	I _{cont}	RF None	-	2	-	μA

Note Pin_(1dB) is the measured input power level when the insertion loss increases 1dB more than that of the linear range.

TYPICAL CHARACTERISTICS

(VC(H)=3V, VC(L)=0V, T_A = +25°C, DC Block Capacitance=4pF, through board loss is subtracted in insertion loss data)

Typical Isolation vs. Frequency

Typical Return Loss vs. Frequency

Typical Insertion Loss vs. Input Power

EVALUATION CIRCUIT

Note: It is recommended to connect the pin directly to the ground, or not to connect the pin to anything.

The application circuits and their parameters are for reference only and are not intended for use in actual designs. DC Blocking Capacitors are required at all RF ports.

PACKAGE DIMENSIONS

6-pin TSON (Unit: mm)

RECOMMENDED SOLDERING CONDITIONS

Recommended Soldering Conditions are available on CEL's Part Summary page under Associated Documents

REVISION HISTORY

Version	Change to current version	Page(s)
CDS-0015-03 (Issue A) February 17, 2016	Initial datasheet	N/A
CDS-0015-03 (Issue B) March 11, 2016	Added Eval Board ordering information	1
CDS-0015-03 (Issue C) March 15, 2016	Updated "Note" definition	3
CDS-0015-03 (Issue D) April 4, 2016	Updated Marking information	1, 2
CDS-0015-03 (Issue E) May 9, 2016	Correction to Truth Table: VC1 and VC2	2
CDS-0015-03 (Issue F) August 11, 2016	Removed "preliminary"	All
CDS-0015-03 (Issue G) January 10, 2017	Revised Electrical Characteristics table Added "Recommended Soldering Conditions" section	3, 5
CDS-0015-06 (Issue H) August 04, 2017	Added Error Vector Magnitude parameter to Electrical Characteristics table Added Typical Characteristics graphs section Revised Evaluation Circuit and added Note	3, 4 ,5

[CAUTION]

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice.
- You should not alter, modify, copy, or otherwise misappropriate any CEL product, whether in whole or in part.
- CEL does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of CEL products or technical information described in this document. No license, expressed, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of CEL or others.
- Descriptions of circuits, software and other related information in this document are provided only to illustrate the
 operation of semiconductor products and application examples. You are fully responsible for the incorporation of
 these circuits, software, and information in the design of your equipment. CEL assumes no responsibility for any
 losses incurred by you or third parties arising from the use of these circuits, software, or information.
- CEL has used reasonable care in preparing the information included in this document, but CEL does not warrant that such information is error free. CEL assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Although CEL endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
 Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a CEL product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures

Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

- Please use CEL products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
 CEL assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of CEL.
- Please contact CEL if you have any questions regarding the information contained in this document or CEL products, or if you have any other inquiries.