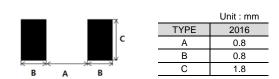


Specification Sheet

CIGT201610EH2R2MNE (2016 / EIA 0806)

APPLICATION

Smart phones, Tablet, Wearable devices, Power converter modules, etc.


FEATURES

Small power inductor for mobile devices Low DCR structure and high efficiency inductor for power circuits. Monolithic structure for high reliability Free of all RoHS-regulated substances Halogen free

DIMENSION

RECOMMENDED LAND PATTER

TYPE	Dimension [mm]							
TIPE	L	W	Т	D				
2016	2.0±0.2	1.6±0.2	1.0 max	0.5±0.2				

DESCRIPTION

Part no.	Size Thickness [inch/mm] [mm] (max)	Inductance	Inductance tolerance	DC Resistance [m Ω]		Rated DC Current (Isat) [A]		Rated DC Current (Irms) [A]		
Fait no.		[mm] (max)	[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.
CIGT201610EH2R2MNE	0806/2016	1.0	2.2	±20	87	73	2.7	2.9	2.5	2.7

* Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)

* DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent

* Maximum allowable DC current : Value defined when DC current flows and the initial value of inductance has decreased by 30% or

when current flows and temperature has risen to 40 °C whichever is smaller. (Reference: ambient temperature is 25 °C±10) (Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is $25\,^\circ\!C\pm10)$

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40 °C by DC current. (Reference: ambient temperature is 25 °C±10)

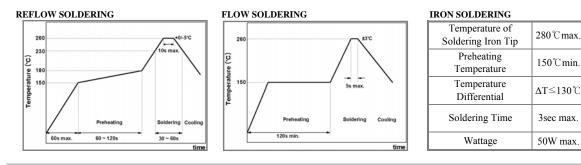
* Absolute maximum voltage : Rated Voltage 20V.

* Operating temperature range : -40 to +125°C (Including self-temperature rise)

PRODUCT IDENTIFICATION

CIG	T	<u>2016</u>	<u>10</u>	<u>EH</u>	<u>2R2</u>	M	<u>N</u>	<u>E</u>
		(3)						

(2) Type


(4) Thicknes (10: 1.0mm)

(6) Inductan (2R2: 2.2 uH)

(T: Metal Composite Thin Film Type)

- (1) Power Inductor
- (3) Dimensior (2016: 2.0mm ×1.6 mm)
- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)

RECOMMENDED SOLDERING CONDITION

PACKAGING

Packaging Style	Quantity(pcs/reel)		
Embossed Taping	3000 pcs		

Item	Specified Value		Test Condition	
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4±1 seconds, and preheated at $150 \sim 180^{\circ}$ for 2 \sim 3 min, the specimen shall be immersed in solder at 245±5 °C for 4±1 seconds.		
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.	After being dipped in flux for 4 ± 1 seconds, and preheated at $150 \sim 180^{\circ}$ for $2 \sim 3$ min, the specimen shall be immersed in solder at $260\pm 5^{\circ}$ for 10 ± 0.5 seconds.		
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under the following conditions. -40 \pm 3 °C for 30 min \rightarrow 85 \pm 3 °C for 30 min		
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at -55±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.		
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at 125±2 °C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.		
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5 °C, 3 times		
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).		
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the PCB thickness : 1.6mm	e limit point in 5 sec.	
Bending Test		20 R 340	Unit ;mm 2	
	No indication of peeling shall occur on the terminal electrode.	W(kgf)	TIME(sec)	
Terminal Adhesion Test		0.5	10±1	
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test or 1 meter, 10 drops	n concrete plate.	