

Metal Composite Power Inductor (Thin Film) Specification Sheet

CIGT252010LMR47MNE (2520 / EIA 1008)

APPLICATION

Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FFATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

DIMENSION

RECON	IMENDE	D LAN	D PATT	ERN
			c	TY

	Unit : mm
TYPE	2520
Α	1.2
В	0.8
С	2.0

TYPE Dimension [mm] L W T D 2520 2.5±0.2 2.0±0.2 1.0 max 0.55±0.25

DESCRIPTION

Part no.	Size	Thickness	Inductance	tolerance	DO Redictarios [mai]		Rated DC Current (Isat) [A]		Rated DC Current (Irms) [A]	
raitiio.	[inch/mm]	[mm] (max)	[uH]		Max.	Тур.	Max.	Тур.	Max.	Тур.
CIGT252010LMR47MNE	1008/2520	1.0	0.47	±20	29	24	5	6	4.2	4.5

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

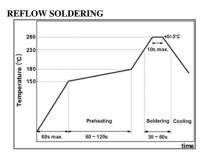
when current flows and temperature has risen to 40℃ whichever is smaller. (Reference: ambient temperature is 25℃±10)

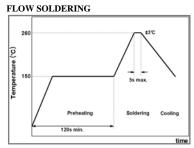
(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of

the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)


- * Absolute maximum voltage : Rated Voltage 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

<u>CIG</u>	I	<u>2520</u>	<u>10</u>	<u>LM</u>	<u>R47</u>	<u>M</u>	<u>N</u>	<u>E</u>
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- (1) Power Inductor
- (3) Dimension (2520: 2.5mm x 2.0mm)
- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (T: Metal Composite Thin Film Type)
- (4) Thicknes (10: 1.0mm)
- (6) Inductan (R47: 0.47 uH)

RECOMMENDED SOLDERING CONDITION

IRON SOLDERING	
Temperature of	280°C max.
Soldering Iron Tip	280 C max.
Preheating	150℃min.
Temperature	130 CIIIII.
Temperature	ΔT≤130℃
Differential	Δ1 = 130 C
Soldering Time	3sec max.
Soldering Time	Jace Illax.
Wattage	50W may

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	3000 pcs

Item	Specified Value	Test Condition		
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4 \pm 1 seconds, and preheated at 150 \sim 180 $^{\circ}$ C for 2 \sim 3 min, the specimen shall be immersed in solder at 245 \pm 5 $^{\circ}$ C for 4 \pm 1 seconds.		
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.	After being dipped in flux for 4 \pm 1 seconds, and preheated at 150 \sim 180 $^{\circ}$ C for 2 \sim 3 min, the specimen shall be immersed in solder at 260 \pm 5 $^{\circ}$ C for 10 \pm 0.5 seconds.		
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under the following conditions40 \pm 3 °C for 30 min \rightarrow 85 \pm 3 °C for 30 min		
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at -55±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.		
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at 125±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.		
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2℃, 85%RH, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.		
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times		
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).		
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the limit point in 5 sec. PCB thickness: 1.6mm		
Bending Test	20 Unit :mm R340 45 45			
	No indication of peeling shall occur on the terminal electrode.	W(kgf) TIME(sec) 0.5 10±1		
Terminal Adhesion Test		W W		
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test on concrete plate. 1 meter, 10 drops		