

60 W, 12.7 - 13.25 GHz, 40 V, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA1C1D060D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a Silicon Carbide substrate, using a 0.25 μm gate length fabrication process. GaN-on-SiC has superior properties compared to silicon, gallium arsenide or GaN-on-Si, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si, GaAs, and GaN-on-Si transistors.

PN: CMPA1C1D060D

Typical Performance Over 12.7-13.25 GHz ($T_c = 25^{\circ}C$)

Parameter	12.7 GHz	13.0 GHz	13.25 GHz	Units
Small Signal Gain	26.5	26.2	26	dB
P _{SAT} @ P _{IN} = 28 dBm	65	63	60	W
PAE @ P _{IN} = 28 dBm	29	28	27	%

Note: All data in this table is based on fixtured, CW performance

Features

- 26 dB Small Signal Gain
- 60 W Typical P_{SAT}
- · Operation up to 40 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.209 x 0.240 x 0.004 inches

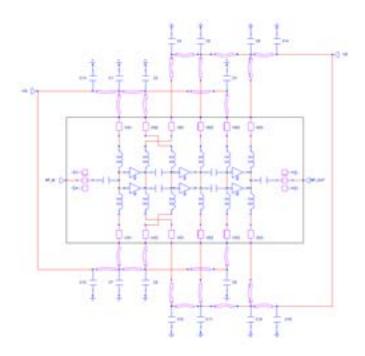
Applications

- Satellite Communications Uplink
- PTP Radio

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	.,,	0.500
Gate-to-Source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	16.8	mA	
Maximum Drain Current Stage 1 ¹		1.8		2506
Maximum Drain Current Stage 2 ¹	I _{DMAX}	3.6	А	25°C
Maximum Drain Current Stage 2 ¹		9		
Thermal Resistance, Junction to Case ²	$R_{ heta JC}$	1.12	°C/W	85°C, P _{DISS} = 118 W
Mounting Temperature (30 seconds)	T _s	320	°C	30 seconds

Electrical Characteristics (Frequency = 12.7 GHz to 13.25 GHz unless otherwise stated; T_C = 25°C)


Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics							
Gate Threshold	V _{TH}	-3.8	-2.8	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 27 \text{ mA}$	
Drain-Source Breakdown Voltage	V_{BD}	100	100	-	V	$V_{GS} = -8 \text{ V}, I_D = 27 \text{ mA}$	
RF Characteristics ²							
Small Signal Gain	S21	_	27	_			
Input Return Loss	S11	_	-15	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 0.45 \text{ A}$	
Output Return Loss	S22	_	-5	-			
Power Output	P _{OUT}	_	75	_	W		
Power Added Efficiency	PAE	_	30	_	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 0.45 \text{ A}, \text{ CW}, P_{IN} = 30 \text{ dBm}$	
Power Gain	G _P	_	19	_	dB		
Output Mismatch Stress	VSWR	_	5:1	_	Ψ	No damage at all phase angles, $V_{DD} = 40 \text{ V}$, $I_{DQ} = 0.45 \text{ A}$, $P_{OUT} = 30 \text{ W CW}$	

¹ Current limit for long term, reliable operation. Total current when biased from top and bottom drain pads

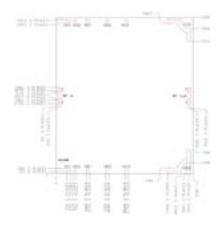
² Eutectic die attach using 80/20 AuSn solder mounted to a 20 mil thick CuMoCu carrier.

Notes: 1 Scaled from PCM data 2 All data pulse tested on-wafer with Pulse Width = 10µs, Duty Cycle = 0.1%

Block Diagram Showing Additional Capacitors for Operation Over 12.7 to 13.25 GHz

Designator	Description	Qty
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12	CAP, 51pF, +/-10%, SINGLE LAYER, 0.030", Er 3300, 100V, Ni/Au TERMINATION	12
C13, C14, C15, C16	CAP, 680pF, +/-10%, SINGLE LAYER, 0.070", Er 3300, 100V, Ni/Au TERMINATION	4

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D

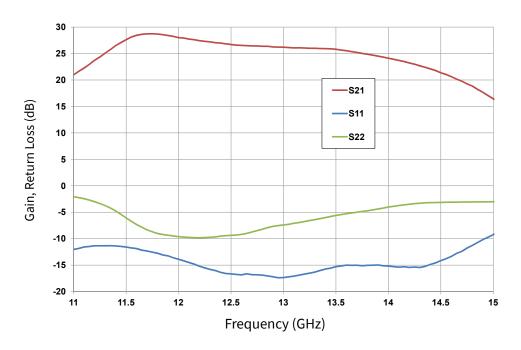
Note:

¹ The input, output and decoupling capacitors should be attached as close as possible to the die-typical distance is 5 to 10 mils with a maximum of 15 mils

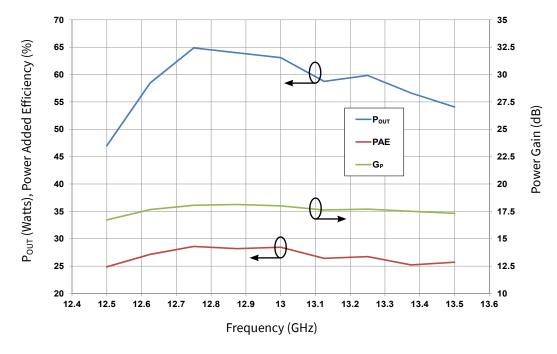
¹ The MMIC die and capacitors should be connected with 2 mil gold bond wires

Die Dimensions (units in microns)

Overall die size $5300 \times 6100 \ (\pm 0/-50)$ microns, die thickness $100 \ (\pm/-10)$ microns. All Gate and Drain pads must be wire bonded for electrical connection.


Pad Number	Function	Description	Pad Size (microns)	Note	
1	RF_IN ¹	RF-Input pad. Matched to 50 ohm	125x250	3	
2	VG1 bottom	C-tt			
3	VG1 top	Gate control for stage 1. V _G = -2.0 to -3.5 V		1, 2	
4	VG2 bottom	C-tt		,	
5	VG2 top	Gate control for stage 2. V _G = -2.0 to -3.5 V			
6	VD1 bottom	Duning and the life water and Mark 40 M	125x125	1	
7	VD1 top	Drain control for stage 1. V _D = 40 V			
8	VD2 bottom	Due in control for store 2 V = 40 V			
9	VD2 top	Drain control for stage 2. V _D = 40 V			
10	VG3 bottom	Cata control for store 2 V = 20to 25V		1.2	
11	VG3 top	Gate control for stage 3. V _G = -2.0 to -3.5 V		1, 2	
12	VD3 bottom	Dunin countral for stone 2 V = 40 V	540x150	1	
13	VD3 top	Drain control for stage 3. V _D = 40 V	150x500	1	
14	RF_OUT	RF-Output pad. Matched to 50 ohm	125x125	3	

The RF In and Out pads have a ground-signal-ground configuration with a pitch of 1 mil (25μm)
VG1&2&3 top and bottom are connected internally, so it would be enough to connect either one for proper operation
The RF Input and Output pads have a ground-signal-ground with a nominal pitch of 10 mil (250μm). The RF ground pads are 125 x 250 microns


Assembly Notes:

- Recommended solder is AuSn (80/20) solder. Refer to Wolfspeed's website for the Eutectic Die Bond Procedure application note at https://www.wolfspeed.com/document-library/?productLine=rf&q=Eutectic+Die+Bond+Procedure+application
- Vacuum collet is the preferred method of pick-up
- The backside of the die is the Source (ground) contact
- Die back side gold plating is 5 microns thick minimum
- Thermosonic ball or wedge bonding are the preferred connection methods
- Gold wire must be used for connections
- Use the die label (XX-YY) for correct orientation

Typical Performance of the CMPA1C1D060D

Figure 1. Small Signal Gain vs Frequency $V_{DD} = 40 \text{ V}$, $I_{DQ} = 0.45 \text{ A}$

Figure 2. Output Power & PAE vs Frequency $V_{DD} = 40 \text{ V}$, $I_{DQ} = 0.45 \text{ A}$, $P_{IN} = 28 \text{ dBm}$

Part Number System

CMPA1C1D060D

Table 1.

Parameter	Value	Units
Lower Frequency	12.7	GHz
Upper Frequency ¹	13.25	GHz
Power Output	60	W
Package	Bare Die	_

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA1C1D060D	GaN MMIC, Bare Die	Each	