

90 W, 12.75 - 13.25 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA1C1D080F is a packaged, 90 W HPA utilizing Cree's high performance, 0.25um GaN on SiC production process. With a 12.75 - 13.25 GHz operating frequency range targeting satellite communications, the CMPA1C1D080F offers 3rd-order intermodulation performance of -30 dBc at 20 W of total output power. For exceptional thermal management, the HPA is offered in a bolt-down, flange package.

PN: CMPA1C1D080F Package Type: 440222

Typical Performance Over 12.75 - 13.25 GHz ($T_c = 25^{\circ}C$)

Parameter	12.75 GHz	13.0 GHz	13.25 GHz	Units
Small Signal Gain ^{1,2}	26.6	25.3	25.2	dB
Output Power ^{1,3}	49.7	49.9	49.7	dBm
Power Gain ^{1,3}	16.7	16.9	16.7	dB
Power Added Efficiency ^{1,3}	23	23	21	%
IM3 ^{1,4}	-27	-27	-27	dBc

Notes:

 ${}^{1}V_{DD} = 40 \text{ V}, \text{ I}_{DO} = 750 \text{ mA}$

² Measured at Pin = -15 dBm

³ Measured at Pin = 33 dBm, CW

⁴ Measured at 40 dBm Pout/tone, 10 MHz

Features

- 90 W Typical P_{SAT} >21% Typical Power Added Efficiency
- 25 dB Small Signal Gain
- 20 W Total Output Power at -30 dBc IM3
- Operation up to 40 V

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Satellite Communications Uplink

Figure 1.

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	120	VDC	25°C
Gate-source Voltage	V _{GS}	-10, +2	VDC	25°C
Storage Temperature	T _{stg}	-55, +150	°C	
Maximum Forward Gate Current	I _G	27	mA	25°C
Maximum Drain Current	I _{DMAX}	13.5	А	
Soldering Temperature	T _s	260	°C	
Junction Temperature	Tj	225	°C	MTTF > 1e6 Hours

Electrical Characteristics (Frequency = 12.75 GHz to 13.25 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{gs(th)}	-3.1	-2.9	-2.7	V	$V_{DS} = 10 \text{ V}, I_{D} = 27 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.65	-	$V_{\rm DC}$	$V_{_{DD}} = 40 \text{ V}, I_{_{DQ}} = 750 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	25.8	26.2	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	120	-	-	V	$V_{gs} = -8 \text{ V}, I_{p} = 27 \text{ mA}$
RF Characteristics ²						
Small Signal Gain	S21 ₁	-	25	-	dB	Pin = -15 dBm, Freq = 12.75 - 13.25 GHz
Output Power	P _{out1}	-	49.7	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 12.75 GHz
Output Power	P _{OUT2}	-	49.9	-	dBm	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 13.0 GHz
Output Power	P _{out3}	-	49.7	_	dBm	$V_{DD} = 40 \text{ V}, \text{ I}_{DQ} = 750 \text{ mA}, \text{ P}_{IN} = 33 \text{ dBm}, \text{ Freq} = 13.25 \text{ GHz}$
Power Added Efficiency	PAE ₁	-	23	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 12.75 GHz
Power Added Efficiency	PAE ₂	-	23	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 13.0 GHz
Power Added Efficiency	PAE ₃	-	21	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 13.25 GHz
Power Gain	$G_{_{P1}}$	-	16.7	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 750 mA, $P_{_{IN}}$ = 33 dBm, Freq = 12.75 GHz
Power Gain	G _{P2}	-	16.9	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 13.0 GHz
Power Gain	G _{P3}	-	16.7	-	dB	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 750 mA, P $_{_{\rm IN}}$ = 33 dBm, Freq = 13.25 GHz
Input Return Loss	S11	-	-18.6	-	dB	Pin = -15 dBm, 12.75 - 13.25 GHz
Output Return Loss	S22	-	-15.8	-	dB	Pin = -15 dBm, 12.75 - 13.25 GHz
IM3	IM3	-	-27	-	dBc	Pout/tone = 40 dBm, 10 MHz spacing
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No damage at all phase angles

Notes:

¹ Scaled from PCM data ² Unless otherwise noted: Pin = 33 dBm, V_{DD} = 40 V, I_{DQ} = 750 mA, CW

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T _J	217	°C	CW. P = 236 W. T = 85 °C
Thermal Resistance, Junction to Case	R _{ejc}	0.56	°C/W	- , DISS - , CASE

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_{D} = 40 \text{ V}$, $I_{DO} = 750 \text{ mA}$, CW, Pin = 33 dBm, $T_{BASE} = +25 \text{ °C}$

Figure 1. Output Power vs Frequency as a Function of Temperature

Figure 2. Output Power vs Frequency as a Function of Input Power

Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Frequency (GHz)

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

Frequency (GHz)

Figure 6. Drain Current vs Frequency as a Function of Input Power

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_D = 40 V$, $I_{DO} = 750 mA$, CW, Pin = 33 dBm, $T_{BASE} = +25 °C$

Figure 11. Drain Current vs Frequency as a Function of VD

Figure 10. Power Added Eff. vs Frequency as a Function of IDQ

Figure 12. Drain Current vs Frequency as a Function of IDQ

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_{D} = 40 \text{ V}$, $I_{DO} = 750 \text{ mA}$, CW, Pin = 33 dBm, $T_{BASE} = +25 \text{ °C}$

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency 35 30 -S Gain (dB) 25 20 15 12.75 GHz 13 GHz 10 13.25 GHz 5 15 18 21 0 3 6 9 12 24 27 30 33

Input Power (dBm)

Figure 17. Gate Current vs Input Power as a Function of Frequency

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: V_{D} = 40 V, I_{DO} = 750 mA, CW, Pin = 33 dBm, T_{BASE} = +25 °C

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

Figure 21. Drain Current vs Input Power as a Function of Temperature

Figure 22. Gate Current vs Input Power as a Function of Temperature

7

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DO} = 750 \text{ mA}$, CW, Pin = 33 dBm, $T_{BASE} = +25 \text{ °C}$

35

Figure 25. Large Signal Gain vs Input Power as a Function of IDQ

Input Power (dBm)

Input Power (dBm)

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_p = 40$ V, $I_{po} = 750$ mA, Pin = -15 dBm, $T_{BASE} = +25$ °C

Figure 30. Input RL vs Frequency as a Function of Temperature

Figure 31. Input RL vs Frequency as a Function of Temperature

Figure 33. Output RL vs Frequency as a Function of Temperature

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: $V_p = 40$ V, $I_{po} = 750$ mA, Pin = -15 dBm, $T_{BASE} = +25$ °C

Figure 37. Input RL vs Frequency as a Function of IDQ

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: V_D = 40 V, I_{DO} = 750 mA, CW, Pin = 33 dBm, Tone Spacing = 10 MHz, T_{BASE} = +25 °C

Power Out Per Tone (dBm)

Figure 41. IM5 vs Output Power as a

Power Out Per Tone (dBm)

Power Out Per Tone (dBm)

Figure 43. IM5 vs Output Power as a Function of IDQ

Power Out Per Tone (dBm)

Figure 44. IM3 vs Output Power as a Function of Tone Spacing

Figure 45. IM5 vs Output Power as a Function of Tone Spacing

IM5 (dBc)

Power Out Per Tone (dBm)

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: V_D = 40 V, I_{DO} = 750 mA, CW, Pin = 33 dBm, Tone Spacing = 10 MHz, T_{BASE} = +25 °C

Power Out Per Tone (dBm)

Figure 47. IM5 vs Output Power as a

Power Out Per Tone (dBm)

Power Out Per Tone (dBm)

Figure 49. IM5 vs Output Power as a Function of IDQ

Power Out Per Tone (dBm)

Figure 50. IM3 vs Output Power as a Function of Tone Spacing

M3 (dBc)

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: V_D = 40 V, I_{DO} = 750 mA, CW, Pin = 33 dBm, Tone Spacing = 10 MHz, T_{BASE} = +25 °C

Power Out Per Tone (dBm)

Power Out Per Tone (dBm)

Power Out Per Tone (dBm)

Figure 55. IM5 vs Output Power as a Function of IDQ

Power Out Per Tone (dBm)

Figure 56. IM3 vs Output Power as a Function of Tone Spacing

Figure 57. IM5 vs Output Power as a Function of Tone Spacing

IM5 (dBc)

Power Out Per Tone (dBm)

12

Typical Performance of the CMPA1C1D080F

Test conditions unless otherwise noted: V_{D} = 40 V, I_{DO} = 750 mA, CW, Pin = 33 dBm, Tone Spacing = 10 MHz, T_{BASE} = +25 °C

Figure 59. IM5 vs Tone Spacing as a

CMPA1C1D080F-AMP Evaluation Board Schematic

CMPA1C1D080F-AMP Evaluation Board Outline

CMPA1C1D080F-AMP Evaluation Board Bill of Materials

Designator	Description	Qty
C1,C3	CAP, 33000PF, 0805,100V, X7R	2
C2,C4,C6,C9	CAP, 2.2UF, 100V, 10%, X7R, 1210	4
C7,C10	CAP, 10UF, 100V, 10%, X7R, 2220	2
C11	CAP, 100 UF, 20%, 160V, ELEC	1
W1	WIRE, 18 AWG ~ 3"	1
W2,W3	WIRE, 18 AWG ~ 1.75"	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3,J4	HEADER RT>PLZ .1CEN LK 9POS	2
J5	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
Q1	CMPA1C1D080F, 80W, 12.7-13.25GHz, GaN MMIC, 40V	1
	PCB, TEST FIXTURE, 440222 PKG	1
	BASEPLATE, CU, 2.5 X 4.0 X 0.5 IN	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
	CMPA1C1D080F	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA1C1D080F (Package 440222)

PIN	DESC.
1	Bias Gate 2
2	Bias Gate 2
3	GND
4	RF IN
5	GND
6	Bias Gate 1
7	Bias Gate 1
8	Bias Drain 2
9	Bias Drain 2
10	GND
11	RF OUT
12	GND
13	Bias Drain 1
14	Bias Drain 1

5. ALL PLATED SURFACES ARE NI/AU				
	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
А	0.679	0.691	17.25	17.55
В	0.003	0.006	0.076	0.152
С	0.214	0.241	5.44	6.12
D	0.307	0.323	7.80	8.20
E	0.016	0.032	0.406	0.813
F	0.047	0.063	1.194	1.600
G	0.936	0.954	23.77	24.23
н	0.912	0.930	23.16	23.62
J	0.795	0.811	20.19	20.60
к	ø0.094	ø0.110	ø2.39	ø2.79
L	0.062	0.078	1.575	1.981
м	0.006	0.022	0.152	0.559
N	0.004	0.018	0.102	0.457

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEVOND EDGE OF LID. 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

2. CONTROLLING DIMENSION: INCH.

NOTES

Part Number System

Parameter	Value	Units
Lower Frequency	12.75	GHz
Upper Frequency	13.25	GHz
Power Output	80	W
Package	Flange	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.	
Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2

17