

Sub-G Module Data Sheet

Sample Part Number: **CMWX1ZZABZ-TEMP**

CMWX1ZZABZ-TEMP-1

MP Part Number: **CMWX1ZZABZ-078**

CMWX1ZZABZ-091

Revision History

A Dec 1, 2016 Initial Draft B Jan 19, 2017 Revise template Updated the RF performance, Electrical Characteristics and power up sequence. C Oct 16, 2018 Added weight info. Updated P/N Revised label info	Revision Code	Date	Description	Comments
Updated the RF performance, Electrical Characteristics and power up sequence. C Oct 16, 2018 Added weight info. Updated P/N	Α	Dec 1, 2016	Initial Draft	
C Oct 16, 2018 and power up sequence. Added weight info. Updated P/N	В	Jan 19, 2017	Revise template	
	С	Oct 16, 2018	and power up sequence. Added weight info. Updated P/N	

<u>Specification Number : BP-ABZ-C</u> 3/16

TABLE OF CONTENTS

atures ·····	4
rt Number ·····	$\cdots \cdots 4$
atures rt Number ock Diagram bel Information	4
bel Information ·····	5
solute Maximum Ratings	
perating Conditionectrical Characteristics	5
ectrical Characteristics ······	6
FSK/OOK Transceiver Specification	6
2. LoRa Transceiver Specification	6
B. SIGFOX Transceiver Specification	····· 7
Low power mode current	7
wer Sequences ference circuit	8
ference circuit	9
ape and Reel packing ······	1
ape and Reel packing	14
UTION	16

1. Features

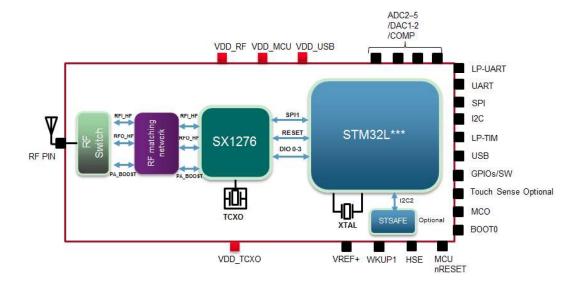
Interfaces : I2C, UART, USB, SPI Main ICs : STM32L, SX1276

Reference Clocks : Integrated 32MHz clock (TCXO with frequency error=±2 ppm)

and 32.768KHz clock (frequency error=±20 ppm)

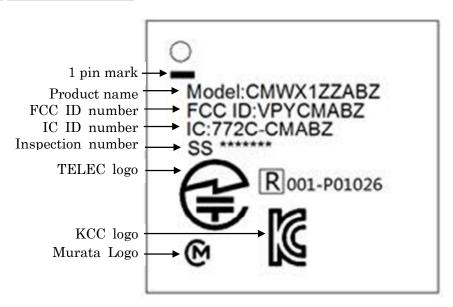
Supported Frequencies : 868 MHz, 915 MHz

Module Size : 12.5 mm x 11.6 mm x 1.76 mm (Max)


Weight : 0.48g (Typ)
Package : Metal Shield can

RoHS : This module is compliant with the RoHS directive

2. Part Number


Ordering Part Number	MCU	Secure element	Description
CMWX1ZZABZ- TEMP	STM32L 082	NA	Engineering sample
CMWX1ZZABZ -EVK	STM32L 082	NA	Evaluation board
CMWX1ZZABZ-078	STM32L 082	NA	MP P/N
CMWX1ZZABZ- TEMP-1	STM32L 072	NA	Engineering sample
CMWX1ZZABZ-EVK-1	STM32L 072	NA	Evaluation board
CMWX1ZZABZ-091	STM32L 072	NA	MP P/N

3. Block Diagram

4. Label Information

5. Absolute Maximum Ratings

Table 3 Maximum ratings

	Parameters	Min	Тур	Max	Unit
Storage Temperatu	-40	25	+90	degC	
Input RF Level			-	10	dBm
Supply Voltage	VDD_USB	-0.3	-	3.9	V
	VDD_MCU, VDD_RF, VDD_TCXO	-0.3	-	3.9	V
	VREF+	-0.3	-	V _{DD_MCU} +0.4	V

6. Operating Condition

Table 4 Operating specification

	Parameters	Min	Тур	Max	Unit
Operating Temperat	ture			degC	
	VDD_USB (USB peripheral used) (1)	3.0	•	3.6	V
Supply Voltage	VDD_USB(USB peripheral not used) (1)	$V_{DD_MCU_min}$	V_{DD_MCU}	$V_{DD_MCU_max}$	V
Cupply Vollage	VDD_MCU,VDD_RF,VDD_TCXO	2.2 ⁽³⁾	-	3.6	V
	VREF+ ⁽²⁾	1.8	-	VDD_MCU	V

- (1) VDD_USB must respect the following conditions:
 - When VDD MCU is powered on (VDD MCU < VDD MCU min), VDD USB should be always lower than VDD MCU.
 - When VDD_MCU is powered down (VDD_MCU < VDD_MCU_min), VDD_USB should be always lower than VDD_MCU.
 - In operating mode, VDD_USB could be lower or higher than VDD_MCU.
 - If the USB is not used, VDD_USB must be tied to VDD_MCU to be able to use PA11 and PA12 as standard I/Os.
- (2) VREF+ is used to ensure a better accuracy on low-voltage inputs and outputs of ADC and DAC. Detailed information is on the STM32L082*** datasheet and user guider.
- (3) When module is on +20dBm operation, the supply of the voltage should be set from 2.4V to 3.6V.

7. Electrical Characteristics

7.1. FSK/OOK Transceiver Specification

Conditions:

Supply voltage VDD=3.3 V, temperature = 25 °C, FXOSC = 32 MHz, FRF =868/915 MHz, 2-level FSK modulation without pre-filtering, FDA = 5 kHz, Bit Rate = 4.8 kb/s and terminated in a matched 50 Ohm impedance, shared Rx and Tx path matching, unless otherwise specified.

FSK/OOK Receiver Specification

	Treestre openionie					
Symbol	Description	Conditions	Min.	Тур	Max	Unit
RFS_F_HF	LnaBoost is turned on	FDA = 5 kHz, BR = 4.8 kb/s		-117.5		dBm
IDDR (*)	Supply current in Receive	LnaBoost Off, band 1		22		mA
IDDK ()	mode	LnaBoost On, band 1		23		mA

FSK/OOK Transmitter Specification

Symbol	Description	Conditions		Min.	Тур	Max	Unit
	RF output power in 50 ohms	Programmable with	Max		14		dBm
RF_OP	on RFO pin (High efficiency PA)	steps	Min		-5		dBm
	RF output power in 50 ohms	Programmable with	Max		18.5		dBm
RF_OPH	on PA_BOOST pin(Regulated PA)	Programmable with steps Programmable with steps Programmable with 1dB steps Ity on voltage VDD = 2.2 V to 3.6 V Ity From T = -40 °C to +88 RFOP = +20 dBm, on PA BOOST REOP = +17 dBm on	Min		2		dBm
ΔRF_ OPH_V	RF output power stability on PA_BOOST pin versus voltage supply.	VDD = 2.2 V to 3.6 V			+/-1		dB
ΔRF_T	RF output power stability versus temperature on PA_BOOST pin.	From T = -40 °C to +85	°C		+/-1.5		dB
		,			128		mA
IDDT (*)	Supply current in Transmit mode with impedance	· · · · · · · · · · · · · · · · · · ·			106		mA
IDDT (*)	matching				47		mA
		RFO_HF pin			34	·	mA

^(*) IDDR and IDDT are total current consumption including MCU in active.

7.2. LoRa Transceiver Specification

Conditions:

The table below gives the electrical specifications for the transceiver operating with LoRaTM modulation. Following conditions apply unless otherwise specified: Supply voltage = 3.3 V, Temperature = 25° C, FXOSC = 32 MHz, Error Correction Code (EC) = 4/5, Packet Error Rate (PER)= 1%, CRC on payload enabled, Payload length = 10 bytes. With matched impedances

LoRa Receiver Specification

Symbol	Description	Conditions	Min.	Тур	Max	Unit
Symbol IDDR_L (*) RFS_L125_HF RFS_L250_HF		Band 1, BW = 125 kHz		21.5		mA
IDDR_L (*)	Supply current in receiver LoRa mode. LnaBoost off	Band 1, BW = 250 kHz		22.2		mA
	Lorva mode, Enaboost on	Band 1, BW = 500 kHz		23.6		mA
		SF = 6		-117.5		dBm
RFS_L125_HF	RF sensitivity, Long-Range Mode, highest LNA gain, LnaBoost for Band1, using	SF = 7		-122.5		dBm
		SF = 8		-125.5		dBm
		SF = 9		-128.5		dBm
	split Rx/Tx path	SF = 10		-131.0		dBm
	125 kHz bandwidth	SF = 11		-133.5		dBm
		SF = 12		-135.5		dBm
IDDR_L (*) RFS_L125_HF RFS_L250_HF RFS_L250_HF	RF sensitivity, Long-Range	SF = 6		-114.0		dBm
	Mode, highest LNA gain, LnaBoost for Band1, using split Rx/Tx path	SF = 7		-119.0		dBm
RFS_L25U_HF		SF = 8		-122.0		dBm
		SF = 9		-125.0		dBm

250 kHz bandwidth	SF = 10	-127.5	dBm
	SF = 11	-130.0	dBm
	SF = 12	-133.0	dBm

LoRa Transmitter Specification

Symbol	Description	Conditions	Min.	Тур	Max	Unit
IDDT I (*)	Supply current in transmitter	RFOP setting = 14 dBm		47		mΑ
IDDT_L (*)	mode	RFOP setting = 10 dBm	n 47 I	mA		
IDDT_H_L (*)	Supply current in transmitter mode	Using PA_BOOST pin RFOP setting = 20 dBm		128		mA

^(*) IDDR L, IDDT L and IDDT H L are total current consumption including MCU in active.

7.3. SIGFOX Transceiver Specification

Conditions:

The table below gives the electrical specifications for the transceiver operating with SIGFOX modulation. Following conditions apply unless otherwise specified: Supply voltage = 3.3 V, Temperature = 25° C. With matched impedances.

Notes: To operate as SIGFOX mode, the following configuration is required.

- TCXO OUT (Pin 47) must be connected to PH0-OSC IN (Pin46).
- PA12 (Pin 1) must be connected to TXCO_VCC (Pin48).
- SX1276 DIO4 (Pin10) must be connected to PA5 (Pin21).

SIGFOX Receiver Specification

Symbol	Description	Conditions	Min.	Тур	Max	Unit
RFS_F_HF		AT\$SB=x,1, AT\$SF=x,1, AT\$SR PER<0.1		-122		dBm
IDDR_S	Supply current in Receive mode	AT\$TM=3,10		23		mA

SIGFOX Transmitter Specification

Symbol	Description	Conditions		Min.	Тур	Max	Unit
	RF output power in 50 ohms	Programmable with	Max		18.5		dBm
RF_OP_S	on RF pin	steps AT\$SF	Min		4.5		dBm
IDDT_S	Supply current in Transmit	Output power setting 20 AT\$SF	dBm		128		mA
	mode with impedance matching	Output power setting 14 AT\$SF	dBm		44		mA

7.4. Low power mode current

Conditions:

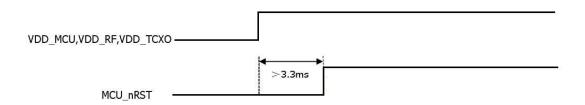
Power supply: 3.3V, Temp: Room, TCXO_VDD (pin 48 of the module) is connected to PA12 (Pin1 of the module)

Mode	Description	Min.	Тур	Max	Unit
Mode0	STM32L0 in Stop mode with RTC (Real Time Clock) (*1)(*3) SX1276 in Sleep mode		1.65		uA
Mode1	STM32L0 in Standby mode with RTC (Real Time Clock) (*2) SX1276 in Sleep mode		1.40		uA

(*1) The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

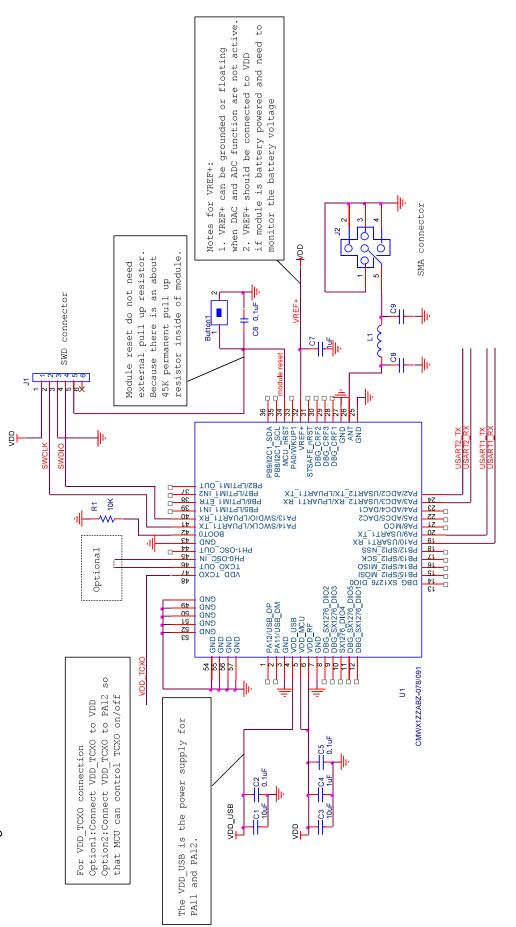
Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5us, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

(*2) The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an


Specification Number: BP-ABZ-C 8/16

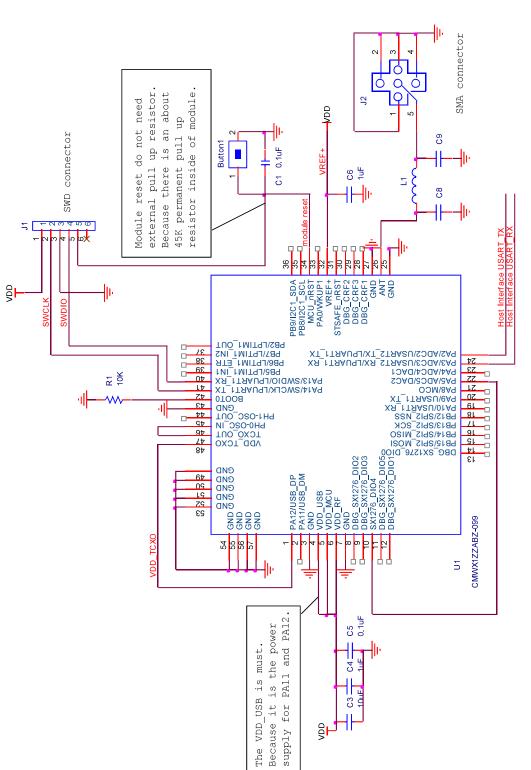
IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

(*3) STM SigFox Firmware is always in stop mode by default, it wakes up automatically when receiving one character. Else it wakes up automatically when an interrupt is to be processed and returns in stop mode when finished.


8. Power Sequences

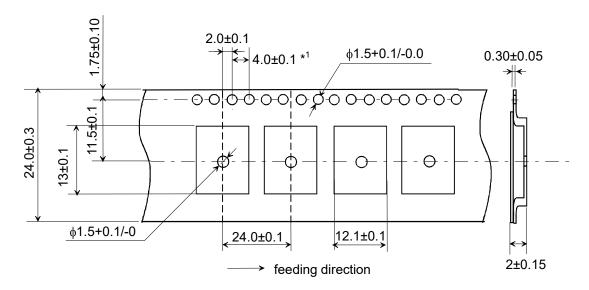
8.1 Power Up Sequence

9. Reference circuit
In case of using the module as LoRa

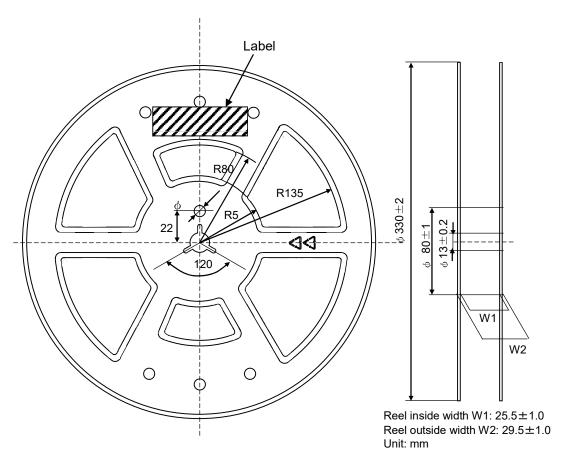


< Specification may be changed by Murata without notice > Murata (China) Investment Co., Ltd.

Specification Number: BP-ABZ-C

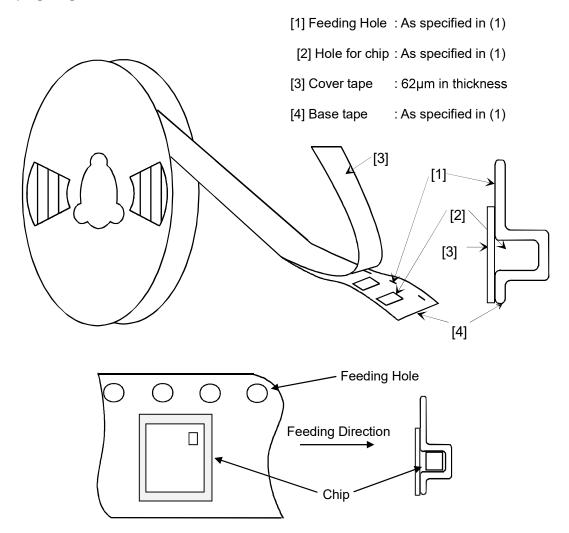


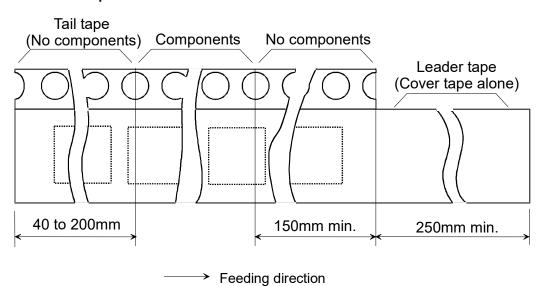
< Specification may be changed by Murata without notice > Murata (China) Investment Co., Ltd.


10. Tape and Reel packing

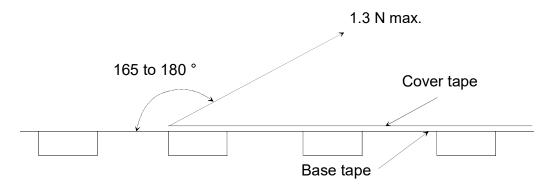
10.1 Dimension of Tape (Plastic tape)

(unit: mm)

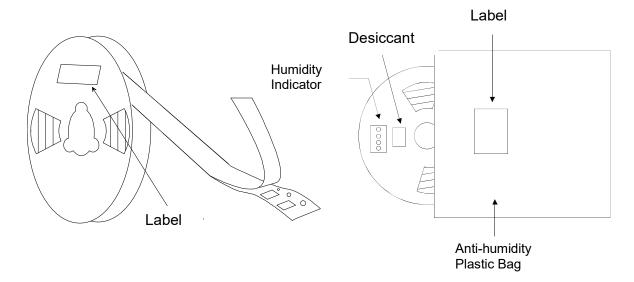

10.2 Dimensions of Reel


Specification may be changed by Murata without notice > Murata (China) Investment Co., Ltd.

10.3 Taping Diagrams



10.4 Leader and Tail tape



- The tape for chips are wound clockwise, the feeding holes to the right side as the tape is pulled toward the user.
- The cover tape and base tape are not adhered at no components area for 250mm min.
- Tear off strength against pulling of cover tape : 5N min.
- Packaging unit : 1000 pcs/ reel
- Material
 - Base tape : PlasticReel : Plastic
 - > Cover tape, cavity tape and reel are made the anti-static processing.
- Peeling of force: 1.3N max. in the direction of peeling as shown below.

- Packaging (Humidity proof Packing)

Tape and reel must be sealed with the anti-humidity plastic bag. The bag contains the desiccant and the humidity indicator.

Specification Number: BP-ABZ-C

14/ 16

11. Notice

11.1 Storage Conditions

Please use this product within 6month after receipt.

- The product shall be stored without opening the packing under the ambient temperature from 5 to 35 $^{\circ}$ C and humidity from 20 \sim 70 $^{\circ}$ RH.

(Packing materials, in particular, may be deformed at the temperature over 40 °C)

- The product left more than 6months after reception, it needs to be confirmed the solderbility before used.
- The product shall be stored in non corrosive gas (CI2, NH3, SO2, Nox, etc.).
- Any excess mechanical shock including, but not limited to, sticking the packing materials by sharp object and dropping the product, shall not be applied in order not to damage the packing materials.

This product is applicable to MSL3 (Based on IPC/JEDEC J-STD-020)

- After the packing opened, the product shall be stored at <30 °C / <60 %RH and the product shall be used within 168 hours.
- When the color of the indicator in the packing changed, the product shall be baked before soldering.

Baking condition: 125 +5/-0 °C, 24 hours, 1 time

The products shall be baked on the heat-resistant tray because the material (Base Tape, Reel Tape and Cover Tape) are not heat-resistant.

11.2 Handling Conditions

Be careful in handling or transporting products because excessive stress or mechanical shock may break products.

Handle with care if products may have cracks or damages on their terminals, the characteristics of products may change. Do not touch products with bear hands that may result in poor solderability.

11.3 Standard PCB Design (Land Pattern and Dimensions)

All the ground terminals should be connected to the ground patterns. Furthermore, the ground pattern should be provided between IN and OUT terminals. Please refer to the specifications for the standard land dimensions.

The recommended land pattern and dimensions is as Murata's standard. The characteristics of products may vary depending on the pattern drawing method, grounding method, land dimensions, land forming method of the NC terminals and the PCB material and thickness. Therefore, be sure to verify the characteristics in the actual set. When using non-standard lands, contact Murata beforehand.

11.4 Notice for Chip Placer:

When placing products on the PCB, products may be stressed and broken by uneven forces from a worn-out chucking locating claw or a suction nozzle. To prevent products from damages, be sure to follow the specifications for the maintenance of the chip placer being used. For the positioning of products on the PCB, be aware that mechanical chucking may damage products.

11.5 Soldering Conditions:

The recommendation conditions of soldering are as in the following figure.

When products are immersed in solvent after mounting, pay special attention to maintain the temperature difference within 100 °C. Soldering must be carried out by the above mentioned conditions to prevent products from damage. Set up the highest temperature of reflow within 260 °C.

Contact Murata before use if concerning other soldering conditions.