Honeywell

CSCA-A Series

Hall-Effect Based Open-Loop Current Sensors

DESCRIPTION

The CSCA-A Series of open-loop current sensors are based on the principles of the Hall-effect wherein a Hall-effect device (HED) produces an output voltage linearly related to the amplitude and phase of a magnetic field applied to it.

Current flowing through a primary conductor generates a rotating magnetic field around the conductor. This field is collector by a core of magnetically sensitive material and

FEATURES

- Measures ac, dc and impulse currents
- Competitive cost/performance ratio
- Low power consumption
- Compact size
- High level of electrical isolation between primary and secondary circuits
- Large primary aperture
- RoHs compliant
- CE, UL approvals (pending)

concentrated in the gap in this core. The HED is located in this core gap. Therefore, the HED output is directly proportional to the amplitude and phase of the primary current.

The HED output is trimmed for gain and offset calibration such that the CSCA-A Series sensor provides a predefined output sensitivity versus primary current.

POTENTIAL APPLICATIONS

- Variable speed drives
- Ground fault detectors
- Current feedback control systems
- Robotics
- UPS and telecommunication power supplies
- Welding power supplies
- · Automotive Battery management systems
- Watt meters

CSCA-A Series

Characteristic	Symbol	Parameter
Nominal current	I _{PN}	See product selection guide
Peak measuring range (ac peak)	I _{PK}	See product selection guide
Nominal output voltage at IPN	V _{SN}	4 V ± 1 %
Supply voltage	V _{cc}	±15 Vdc ± 5 %
Supply current	I _{cc}	17 mA typ.
Accuracy at I _{PN} ¹	Х	\leq ±2 % of I _{PN}
Linearity ²	E	< ±1 %
Zero current offset	Vo	$\leq \pm 20 \text{ mV}$
Residual offset after IPN	V _{OR}	<u><</u> ±20 mV
Thermal drift of offset	V _{OT}	$\leq \pm 3 \text{ mV/°C} @ I_{PN} = 50 \text{ A}$
		$\leq \pm 1.5 \text{ mV/}^{\circ}\text{C}$ @ I _{PN} = 100 A to 600 A
Thermal drift of gain	V _{ST}	≤ ±4 mV/°C
Response time ³	t _R	3 μs to 7 μs
di/dt accuracy followed	di/dt	≥ 50A/µs
Bandwidth	f	dc to 50 kHz
Isolation voltage	VD	3 kV, 50 Hz, 60 sec
Rated insulation voltage	VI	849 V reinforced
Output resistance	Rs	<u>≥</u> 10 kOhm
Ambient operating temperature	T _A	-10 °C to 80 °C [14 °F to 176 °F]
Ambient storage temperature	Ts	-25 °C to 85 °C [-13 °F to 185 °F]

SPECIFICATIONS (all specifications are at ±15 Vdc supply and 25 °C [77 °F] ambient temperature unless otherwise specificed)

NOTES:

 1 For I_P > I_{PN} then X is the same percentage value but of I_P 2 Independent linearity per the Instrument Society of America

 $^{\rm 3}$ At 90% of $I_{\rm P}$

⁴ Appropriate specification items defined using the guidance of EN50178

Hall-Effect Based Open Loop Current Sensors

MOUNTING DIMENSIONS (For reference only. mm)

