CSNV700 SERIES

Flux Gate Current Sensors

DESCRIPTION

The CSNV700 Series are advanced flux gate current sensors that use Honeywell's patented technology to bring the best combination of performance and reliability. They are non-intrusive and electrically isolated from the monitored circuit. This ensures a simple and reliable structure without loss of power to the monitored circuit. The CSNV700 Series are rated for a primary current measurement range of ± 700 A dc. They are calibrated and temperature compensated for improved accuracy using multi-point temperature characterization. The CSNV700 incorporates AEC-Q100 qualified integrated circuits to meet higher quality and reliability requirements.

DIAGNOSTIC FUNCTIONALITY/ CAN OUTPUT

The CAN output of the CSNV700 Series provides fault detection and communication capability. Also, the digital CAN communication is resistant to electrical interference. Examples of sensor and host system faults are as follows:

- Sensor fault
- Supply voltage over range
- Supply voltage under range
- Current over range

CUSTOMIZATION

The CSNV700 Series may be customized to meet application needs. Solutions may be tailored to exact specifications for improved time to market, lower total system costs and enhanced reliability. For technical assistance, we provide global engineering and service support for your needs.

DIFFERENTIATION

- Accuracy: Multi-point temperature characterization and calibration for improved accuracy over temperature range.
- Magnetic immunity: Flux gate configuration and optimized magnetic circuit allow for excellent performance in diverse magnetic environments.
- Flexible: Customizable on-board firmware to meet specific application requirements.

VALUE TO CUSTOMERS

- Accurate: Designed to enable precise battery state measurement for improved user experience.
- Ease of use: Magnetic immunity allows for easy integration into different magnetic environments.
- Easy system integration: CAN communication is transmitted using international road vehicle standard ISO 11898. CAN 2.0B is the default protocol, CAN 2.0A is available as a custom variant.

APPLICATIONS

- Current measurement for battery management systems in electrified vehicles (EV, HEV, PHEV or BEV)
- Current leakage detection and fault isolation in charging systems
- Current measurement in energy storage systems
- Fault detection in heavy industrial equipment

AEC-0100

FEATURES

- Active flux gate current sensing
- Utilizes proprietary Honeywell technology for temperature compensation
- High accuracy and low temperature drift
- Operating temperature of -40°C to 85°C [-40°F to 185°F]
- Digital output: CAN bus output with configurable ID
- Internal diagnostic function
- Different configuration options: Mounting type, baud rate, CAN ID
- UL, CE, UKCA certifications; REACH and RoHS compliant
- AEC-Q100 qualified integrated circuits for higher reliability

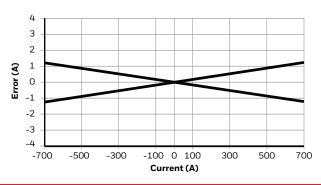
PORTFOLIO

Honeywell offers a variety of current sensors for potential use in many applications. To view the entire product portfolio, click here.

TABLE 1. ABSOLUTE MAXIMUM RATINGS: SUPPLY VOLTAGE = 12 V					
CHARACTERISTIC	SYMBOL	UNIT	PARAMETER	CONDITION	
Load dump over voltage	Vs	V	32	400 mSec	
Over voltage	Vs	V	24 20	10 min continuous	
Reverse polarity	Vs	V	-24	10 min	
Supply voltage: minimum maximum	V _S V _S	V V	7 18	Continuous Continuous	
CAN operation: supply voltage under range alarm, no measurement supply voltage over range alarm, no measurement	_ _	V V	6 to 7 18 to 24	CAN continuous CAN continuous	
Insulation resistance	IR	MOhm	>500	500 V dc at 1 min	
Creepage distance	D_Cp	mm	10	Hole for busbar	
Clearance	D_Cl	mm	9,5	Hole for busbar	
RMS voltage: ac isolation voltage dc isolation voltage	_ _	kV kV	5 5	50 Hz, 1 min 1 min	

TABLE 2. OPERATING CHARACTERISTICS IN NOMINAL RANGE (I _{PN}): SUPPLY VOLTAGE = 12 V							
CHARACTERISTIC	CVMDOL		SPECIFICATION			CONDITION	
CHARACTERISTIC	SYMBOL	UNIT	MIN.	TYP.	MAX.	CONDITION	
Primary current, nominal measuring range (dc)	I _{PN}	А	-700	_	700	_	
Supply voltage	V_S	V	8	12	18	Full accuracy	
Supply voltage hysteresis: maximum minimum	V_{UP} V_{UP} V_{LOW}	V V V	- - -	18.1 17.7 7.1	- - -	When V_s increases When V_s decreases When V_s increases	
	V_{LOW}	V	_	7.8	_	When V _S decreases	
Current consumption: at $I_p = 0 A$ at $I_p = 500 A$	I _C	mA mA	_ _	45 180	_ _	V _S = 12 V, T = 25°C V _S = 12 V, T = 25°C	
Ambient operating temperature	Та	°C	-40	_	85	Temperature range with accuracy guaranteed	
Total accuracy at 20 A < I_P < 700 A	X_{G}	%	-0.5	_	0.5	At FS, $T = -40$ °C to 85 °C, ± 3 sigma	
Error: at $I_p = 0$ A (offset current) at $I_p \le 20$ A	I _{os}	A A	-0.05 -0.1	-	0.05 0.1	T = -40°C to 85°C, ±3 sigma T = -40°C to 85°C, ±3 sigma	
Linearity	ϵ_{L}	%	_	0.1	_	Room temperature	

TABLE 3. ABSOLUTE MAXIMUM RATINGS: SUPPLY VOLTAGE = 24 V					
CHARACTERISTIC	SYMBOL	UNIT	PARAMETER	CONDITION	
Load dump over voltage	Vs	V	42	400 mSec	
Over voltage	V_S	V	39 36	10 min continuous	
Reverse polarity	V_S	V	-36	10 min	
Supply voltage: minimum maximum	V _S V _S	V V	7 32	Continuous Continuous	
CAN operation: supply voltage under range alarm, no measurement supply voltage over range alarm, no measurement	V _s V _s	V V	7 to 8 36 to 39	CAN continuous CAN continuous	
Insulation resistance	IR	MOhm	>500	500 Vdc at 1 min	
Creepage distance	D_Cp	mm	10	Hole for busbar	
Clearance	D_Cl	mm	9,5	Hole for busbar	
RMS voltage: ac isolation voltage dc isolation voltage	_	kV kV	5 5	50 Hz, 1 min 1 min	


TABLE 4. OPERATING CHARACTERISTICS IN NOMINAL RANGE (Ipn): SUPPLY VOLTAGE = 24 V							
CHADACTEDISTIC	CVLADOL		SPECIFICATION			CONDITION	
CHARACTERISTIC	SYMBOL	UNIT	MIN.	TYP.	MAX.	CONDITION	
Primary current, nominal measuring range (dc)	I _{PN}	А	-700	_	700	_	
Supply voltage	V_S	V	8	24	32	-	
Supply voltage hysteresis: maximum minimum	V _{UP} V _{UP} V _{LOW}	V V V	_ _ _ _	32.1 31.7 8.1 7.8	_ _ _ _	When V_s increases When V_s decreases When V_s increases When V_s decreases	
Current consumption: at $I_p = 0$ A at $I_p = 500$ A	I _C	mA mA		45 110		V _S = 24 V, T = 25°C V _S = 24 V, T = 25°C	
Ambient operating temperature	Ta	°C	-40	_	85	_	
Total accuracy at 20 A < $I_{\rm P}$ < 700 A	X_{G}	0/0	-0.5	_	0.5	At FS, $T = -40$ °C to 85 °C, ± 3 sigma	
Error: at $I_p = 0$ A (offset current) at $I_p = 10$ A (offset current)	l _{os}	A A	-0.05 -0.1	_	0.05 0.1	T = -40°C to 85°C, ±3 sigma T = -40°C to 85°C, ±3 sigma	
Linearity	ϵ_{L}	%	_	0.1	_	Room temperature	

FLUX GATE CURRENT SENSORS

CSNV700 SERIES

TABLE 5. MECHANICAL CHARACTERISTICS				
CATALOG LISTING	DESCRIPTION			
Housing material	Plastic PA66-GF25 (UL 94V-0)			
Mounting screw M6, 3 N m maximum torque				
Mating electrical connector	TEM PN 1473672-1			

FIGURE 1. ERROR VS CURRENT

TABLE 6. CANBUS CHARACTERISTICS ^{1,2,3,4}							
MESSAGE DESCRIPTION	CAN ID	DATA LENGTH	MESSAGE LAUNCH TYPE	SIGNAL DESCRIPTION	SIGNAL NAME	START BIT	LENGTH
Primary current Ip (mA) Ox3C2 8 bytes Cyclic transmitted message 10 mSec cycle.	I _p value: 80000000h = 0 mA 7FFFFFFFh = -1 mA 80000001h = 1 mA	IP_VALUE	24	32			
		-	Error information	ERROR_INFORMATION	32	7	
	message	Error indication (1 bit): 0 = normal 1 = failure	ERROR_INDICATION	39	1		
				Fixed to 0	VACANT_DATA_2BYTES	48	16
				CRC-8 POLY: 8 + X2 + X + 1	CRC_8	56	8

¹CANBUS speed: Refer to Figure 2.

⁴Byte order: Big endian (Motorola).

TABLE 7. DIAGNOSTIC TROUBLE CODES						
FAILURE MODE	I _P VALUE	ERROR INDICATION	ERROR INFORMATION			
Flash CRC error	FFFF FFFFh	1	0x48			
AFE over range happens ¹	FFFF FFFFh	1	0x49			
AFE error happens	FFFF FFFFh	1	0x50			
Internal LUT error	FFFF FFFFh	1	0x51			
Power minimum limit	FFFF FFFFh	1	0x54			
Power maximum limit	FFFF FFFFh	1	0x55			

 $^{^{1}}$ Overcurrent detection $I_{p} > 740 A$.

²CAN bus protocol: Version 2.0A/B.

 $^{^3}$ CAN oscillator tolerance: 0.3125 %.

FLUX GATE CURRENT SENSORS

CSNV700 SERIES

TABLE 8. ORDER GUIDE					
Catalog Listing	Description				
CSNV700N-354	CSNV700 Series flux gate current sensors, 700 rated current, through-hole with metal bushing, 12 V supply voltage, 500 k baud rate, 3C4 CAN ID				
CSNV700N-355	CSNV700 Series flux gate current sensors, 700 rated current, through-hole with metal bushing, 12 V supply voltage, 500 k baud rate, 3C5 CAN ID				
CSNV700N-356	CSNV700 Series closed loop current sensors, 700 rated current, through-hole with metal bushing, 12 V supply voltage, 500 k baud rate, 3C6 CAN ID				

FIGURE 2. NOMENCLATURE

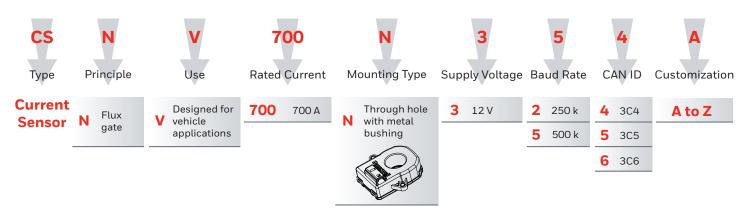
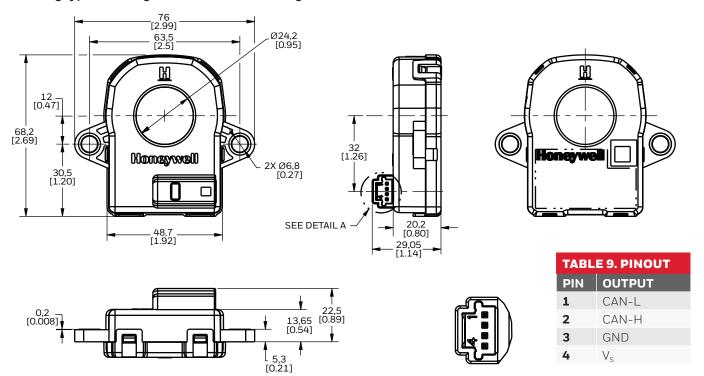


FIGURE 3. POSITIVE PRIMARY CURRENT DIRECTION (POLARITY)


Application condition: Pollution degree PD2

FLUX GATE CURRENT SENSORS

CSNV700 SERIES

FIGURE 4. DIMENSIONAL DRAWINGS (FOR REFERENCE ONLY: MM/[IN])

Mounting type N: Through-hole with metal bushing

TABLE 10. EMC TEST SPECIFICATIONS		
TEST	STANDARD	PROCEDURE
CISPR 25 conducted RF emissions - voltage on supply lines	CISPR25	According to CISPR 25:2008 commission form of testing
CISPR 25 conducted RF emissions - voltage on supply lines	CISPR25	According to CISPR 25:2008 commission form of testing
CISPR 25 radiated emissions	CISPR25	According to CISPR 25:2008 commission form of testing
Bulk current injection (BCI) test	ISO 11452-4	According to ISO 11452-4
ALSE with a ground plane	ISO 11452-2	According to ISO 11452-2
Transient disturbances conducted along supply lines	ISO 7637-2	According to ISO 7637-2
Transient disturbances conducted along I/O or sensor lines	ISO 7637-3	According to ISO 7637-3
Immunity to magnetic field	ISO 11452-8	According to ISO 11452-8
Handling test	_	See "Electrostatic discharge"
Operating test	_	See "Electrostatic discharge"
Electrostatic discharge	ISO 10605	Unpowered direct contact discharge: ±4 kV, ±8 kV Unpowered air discharge: ±8 kV, ±15 kV Powered-up direct contact discharge: ±4 kV Powered-up air discharge: ±8 kV
Impulse noise test	_	_
Fast transient noise test	_	2 kV power port, 1 kV CAN signal and control port
Radio frequency electromagnetic field	IEC 61000-4-3	10V/m (80 MHz to 1 GHz), 3 V/m (1.4 GHz to 2 GHz), 1 V/m (2.0 GHz to 2.7 GHz)
Fast transients bursts susceptibility test	IEC 61000-4-4	2 kV power port, 1 kV CAN signal and control port
Radio frequency continuous conducted	IEC 61000-4-6	0.15 MHz to 80 MHz, 3 V 80 % AM (1 kHz)
Radio frequency magnetic field	IEC 61000-4-8	30 A/M
Radiated disturbance (3M semi-anechoic chamber)	CISPR-11	Group 1, Class A

TABLE 11. ENVIRONMENTAL TEST SPEC	IFICATIONS	
TEST	STANDARD	PROCEDURE
Shipping/storage temperature exposure	-	Not tested. Covered by low and high temperature operating test.
Low temperature operating endurance	ISO16750-4	$120 hr at -40 ^{\circ} C$, power on with $100 A$ primary current.
High temperature operating endurance	ISO16750-4	$85^{\circ}\text{C}, 6000\text{hr},$ power on with 100A primary current. Performance test before and after test only at 25°C and V_{S} nom.
Powered thermal cycle endurance	ISO16750-4	$8\ hr$ at $120\ cycles, 960\ hr.$ Performance test before and after test only at $25^{o}C$ and V_{s} nom.
Thermal shock	IEC60068-2-14	-40°C (30 min soak)/85°C (30 min soak), 250 cycles
Thermal humidity cycle	IEC 60068-2-38	240 hr, $-10^{\circ}\text{C}/65^{\circ}\text{C}$, 93 % humidity between rise in temperature and constant temperature zone, 80 % humidity in drop temperature zone. Performance test before and after test only at 25°C and V _S nom.
High temperature and humidity endurance	IEC60068-2-67	$85^{\circ}\text{C},85\%$ humidity, 1000 hr, power on with 100 A primary current. Performance test before and after test only at 25°C and V_{s} nom.
Vibration	IEC60068-2-64	$5~\rm Hz$ to 2000 Hz, 20 hr/axis, 3 axis with -40°C/85°C temperature cycle during test. Product power on with 100 A primary current. Performance test before and after test only at 25°C and $\rm V_{S}$ nom.
Mechanical shock	ISO16750-3	$500 m/s, 2,20$ each direction (60 total), half sine pulse. Product power on with $100 A$ primary current. Performance test before and after test only at $25^{\circ}C$ and V_{s} nom.
Package drop	ISTA-1A or GB/T 4857.5	With final packaging, drop in direction at 1 corner, 3 edge, 4 face ≥ total 9 drops, 1 m on concrete floor.
Handling drop	ISO 16750-3	1st fall of each DUT at a different dimensional axis, 2nd fall with the given DUT at the same dimensional axis but on the opposite side of the housing, from 1 m on concrete floor. Performance test before and after test only at 25°C and $\rm V_{S}$ nom.
Dust (and other solid intrusion)	ISO20653	IP category: 4
Water intrusion	_	Not tested. IP category: 0. Not protected.
Dew formation test	-	_
Mixed flowing gas	-	Not tested.
Salt fog	ISO16750-4 or GB/T2423.17	5 % salt water solution, 96 hr at 35°C . Performance test before and after test only at 25°C and V_{s} nom.
Chemical exposure (outside cabin compartment)	-	Not tested.

TABLE 12. ELECTRICAL TEST SPECIFICAT	IONS	
TEST	STANDARD	PROCEDURE
Supply voltage range	ISO 16750-2	7 V to 18 V, at 25°C, with 100 A primary current
Supply voltage ripple	_	_
Supply voltage drop out	_	_
Supply voltage dips	_	_
Slow decrease and increase of supply voltage	ISO 16750-2	Power supply changes from 18 V to 0 V with 0.5 V \pm 0.1 V step. At any step, power supply maintain 1 min. Power supply changes from 0 V to 18 V with 0.5 V \pm 0.1 V step. At any step, power supply maintain 1 min. Performance test before and after test only at 25°C and V _S nom.
Defective regulation (full-fielded alternator)	_	_
Jump start	-	Refer to "Overvoltage".
Load dump	-	32 V, 400 mSec, 5 pulses
Overvoltage	ISO 16750-2	18 V, 60 min at 85°C, 24 V for 10 min at 25°C
Reverse supply voltage	ISO 16750-2	-50 V, 10 min
Superimposed alternating voltage	ISO 16750-2	Conduct test as per ISO 16750-2 4.4. Test voltage US max 18 V for UN = 12 V systems, ac voltage (sinusoidal), severity 2, UPP = 4 V. Performance test before and after test only at 25°C and $V_{\rm S}$ nom.
Discontinuities in supply voltage	ISO 16750-2	Conduct test as per ISO 16750-2 4.6. Momentary drop in supply voltage reset behavior at voltage drop starting profile.
Immunity to short circuits in the supply voltage input and load output lines	_	See "Short circuit protection".
Immunity to short circuits in I/O signal lines	_	See "Short circuit protection".
Short circuit protection	ISO 16750-2	Sensor supply of 18 Vdc and 24 Vdc. Connect CAN-H and GND and hold for 60 s. Connect CAN-L and GND and hold for 60 s. Connect CAN-H and $\rm V_{\rm S}$ and hold for 60 s. Connect CAN-L and $\rm V_{\rm S}$ and hold for 60 s. Performance test before and after test only at 25°C and $\rm V_{\rm S}$ nom.
Insulation resistance	ISO 16750-2	Test voltage: 500 Vdc ± 10 Vdc between primary bar and the short-circuited secondary circuit. Test duration: 60 s, insulation resistance ± 500 M Ω
ac dielectric voltage test	IEC60664-1	Test voltage: 5000 Vac, test voltage frequency: 50 Hz to 60 Hz, test duration: 60 s, leakage current ≤1 mA
dc dielectric voltage test	IEC60664-1	Test voltage: 5000 Vdc, test duration: 60, leakage current ≤1 mA
High current transient shock test	_	Product power on with 12 V supply voltage. Monitor product CAN bus output and power supply current. Apply primary transient current shock at 2000 A, 5000 A, 7000 A, 9000 A, 10000 A Performance test before and after test only at 25°C and $\rm V_{\rm S}$ nom.