

CY62167G Automotive

16-Mbit (1M Words × 16-Bit) Static RAM with Error-Correcting Code (ECC)

Features

- AEC-Q100 qualified
- Ultra-low standby power
 Typical standby current: 5.5 μA
 Maximum standby current: 75 μA
- High speed: 45 ns / 55 ns
- Embedded error-correcting code (ECC) for single-bit error correction
- Temperature Ranges:
 Automotive-A: -40 °C to +85 °C
 Automotive-E: -40 °C to +125 °C
- Operating voltage range: 2.2 V to 3.6 V
- 1.0-V data retention
- TTL-compatible inputs and outputs
- Available in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

CY62167G is high-performance CMOS low-power (MoBL) SRAM devices with embedded ECC. This device is offered in dual chip-enable.

Devices with dual chip-enable are accessed by asserting both chip-enable inputs – \overline{CE}_1 as LOW and CE_2 as HIGH.

<u>Data</u> writes are performed by asserting the Write Enable input (WE) LOW, and providing the data and address on device data (I/O₀ through I/O₁₅) and address (A₀ through <u>A₁₉</u>) pins respectively. The Byte High/Low Enable (BHE, BLE) inputs control byte writes, and write data on the corresponding I/O lines

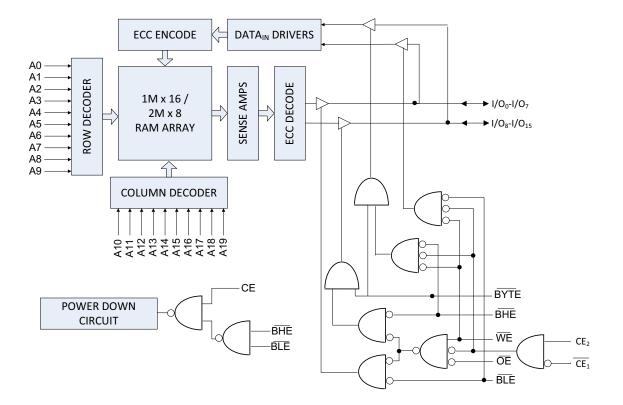
to the memory location specified. BHE controls I/O₈ through I/O_{15:} BLE controls I/O₀ through I/O₇.

Data reads are performed by asserting the Output Enable (\overline{OE}) input and providing the required address on the address lines. Read data is accessible on I/O lines (I/O₀ through I/O₁₅). Byte accesses can <u>be performed</u> by asserting the required byte enable signal (BHE, BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through $\underline{I/O}_{15}$) are placed in a HI-Z state when the device is deselected (CE₁ HIGH / CE₂ LOW for dual chip-enable

device), or control signals are de-asserted (\overline{OE} , \overline{BLE} , and \overline{BHE}).

These devices also have a unique "Byte Power down" feature


where if both the Byte Enables (\overline{BHE} and \overline{BLE}) are disabled, the devices seamlessly switches to standby mode irrespective of the state of the chip enable(s), thereby saving power.

The CY62167G device is available in a Pb-free 48-ball VFBGA and 48-pin TSOP I packages. The device in the 48-pin TSOP I package can also be configured to function as a 2M words × 8 bit device. The logic block diagram is on page 2. Refer to Pin Configurations on page 4 and the associated footnotes for details.

Note 1. This device does not support automatic write-back on error detection.

Logic Block Diagram – CY62167G

CY62167G Automotive

Contents

Pin Configurations	4
Product Portfolio	
Maximum Ratings	5
Operating Range	5
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	7
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table – CY62167G	

Ordering Information	14
Ordering Code Definitions	14
Package Diagram	15
Acronyms	17
Document Conventions	17
Units of Measure	17
Document History Page	18
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC® Solutions	19
Cypress Developer Community	19
Technical Support	19

Pin Configurations

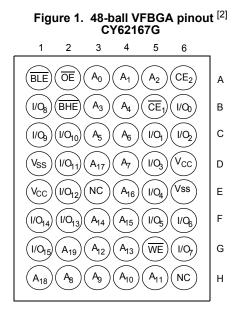


Figure 2. 48-pin TSOP I pinout (Dual Chip Enable without ERR) – CY62167G^[2, 3]

0	
A15 🗖 1	19 116
A14 0	48 – <u>A16</u> 47 – BYTE
A14 🖬 2 A13 🗖 3	46 V ss
A12 - 4	45 I /O15/A20
A11 🖬 5	44 🖬 1/07
A10 🖬 6	43 🗖 I/O14
A9 🗖 7	42 🗖 1/06
A8 🖴 8	41 🗖 1/013
A19 🛏 9	40 🖿 I/O5
<u>NC</u> = 10	39 🗖 I/O12
WE = 11	38 🖬 1/04
CE ₂ = 12 <u>NC</u> = 13	37 🗖 Vcc
<u>NC</u>	36 🗖 I/O11
	35 🗖 1/03
	34 = 1/O10
A18 = 16 A17 = 17	33 🗖 1/02
A17 🖬 17 A7 🖬 18	32 = 1/09 31 = 1/01
A7 L 18 A6 L 19	31 = 1/01 30 = 1/08
A5 2 0	29 1/00
A4 = 21	28 – OE
A3 H 22	20 - 0L 27 - Ves
A2 = 23	$26 = \frac{\sqrt{33}}{CE}$
A1 = 24	27 P <u>Vss</u> 26 P CE ₁ 25 P A0
	110

Product Portfolio

				Power Dissipation					
Product	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} , (mA), f = f _{max} Star		Standby,	Ι _{SB2} (μΑ)		
			()	Тур ^[4]	Max	Тур ^[4]	Max		
CY62167G30	Automotive-E	2.2 V–3.6 V	55	29.0	40.0	5.5	75.0		
	Automotive-A		45	29.0	36.0	5.5	16.0		

Notes

NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration. 2.

The BYTE pin in the <u>48-pin TSOP I package</u> must be tied to V_{CC} to use the device as a 1<u>M × 16 SRAM</u>. The 48-pin TSOP I package can also be used as a 2M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 2 M × 8 configuration, pin 45 is A20, while BHE, BLE and I/O₈ to I/O₁₄ pins are not used.
 Indicates the value for the center of Distribution at 3.0 V, 25 °C and not 100% tested.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature	–65 °C to + 150 °C
Ambient temperature with power applied	–55 °C to + 125 °C
Supply voltage to ground potential ^[5]	–0.5 V to V _{CC} + 0.5 V
DC voltage applied to outputs in HI-Z state ^[5]	–0.5 V to V _{CC} + 0.5 V
DC input voltage [5]	–0.5 V to V _{CC} + 0.5 V

DC Electrical Characteristics

Over the Operating Range

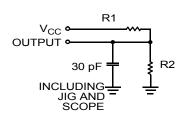
Output current into outputs (LOW) 20 mA
Static discharge voltage (MIL-STD-883, Method 3015)>2001 V
Latch-up current>140 mA

Operating Range

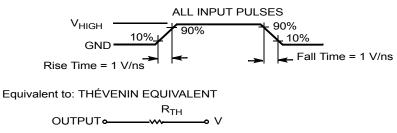
Grade	Ambient Temperature	V _{cc}
Automotive-E	–40 °C to +125 °C	2.2 V to 3.6 V
Automotive-A	–40 °C to +85 °C	

Parameter	ameter Description		Test Conditio	t Conditions		55 ns (Automotive-E)			45 ns (Automotive-A)			
Parameter	Descr	iption	Test Conditio			Typ ^[6]	Max	Min	Тур [6]	Мах	Unit	
V _{OH}		2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = –0.1	V _{CC} = Min, I _{OH} = –0.1 mA		-	_	2.0	-	_	V	
	voltage	2.7 V to 3.6 V	V_{CC} = Min, I_{OH} = -1.0	mA	2.4	-	_	2.4	-	_		
V _{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 m	۱A	-	-	0.4	-	-	0.4	V	
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 m	۱A	-	-	0.4	-	-	0.4		
V _{IH}	Input HIGH	2.2 V to 2.7 V	-		1.8	-	V _{CC} + 0.3	1.8	-	V _{CC} + 0.3	V	
	voltage ^[5]	2.7 V to 3.6 V	-		2.0	-	V _{CC} + 0.3	2.0	-	V _{CC} + 0.3		
V _{IL}	Input LOW	2.2 V to 2.7 V	_	_		-	0.6	-0.3	_	0.6	V	
	voltage ^[5]	2.7 V to 3.6 V			-0.3	-	0.8	-0.3	-	0.8		
I _{IX}	Input leakage	current	$GND \leq V_{IN} \leq V_{CC}$		-4.0	-	+4.0	-1.0	-	+1.0	μA	
I _{OZ}	Output leakage current		$GND \leq V_{OUT} \leq V_{CC}$, Output disabled		-4.0	-	+4.0	-1.0	-	+1.0	μA	
I _{CC}		_{CC} operating supply V_{CC} = Max, $f = f_{MAX}$	f = f _{MAX}	-	29.0	40.0	_	29.0	36.0	mA		
	current		I _{OUT} = 0 mA, CMOS levels	f =1 MHz	-	7.0	18.0	-	7.0	9.0	mA	
I _{SB1} [7]	Automatic power down current – CMOS inputs; V _{CC} = 2.2 to 3.6 V		$ \overline{CE}_1 \ge V_{CC} - \underbrace{0.2}_{CC} \text{ V or } CE_2 \le 0.2 \text{ V} $ or (BHE and BLE) $\ge V_{CC} - 0.2 \text{ V}, $ $ V_{IN} \ge V_{CC} - 0.2 \text{ V}, V_{IN} \le 0.2 \text{ V}, $ $ f = f_{max} \text{ (address and data only)}, $ $ f = 0 \text{ (OE, and WE)}, V_{CC} = V_{CC(max)} $		_	5.5	75.0	_	5.5	16.0	μA	
I _{SB2} ^[7]	Automatic pov current – CM0 V _{CC} = 2.2 to 3	OS inputs;	$\overline{CE}_{1} \ge V_{CC} - 0.2V \text{ or } C$ or (BHE and BLE) $\ge V_{IN}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V$ f = 0, $V_{CC} = V_{CC(max)}$	E ₂ ≤ 0.2 V _{CC} – 0.2 V,	_	5.5	75.0	_	5.5	16.0	μA	

- S. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 6. Indicates the value for the center of <u>Distribution at 3.0 V</u>, 25 °C and not 100% tested.
 7. Chip enables (CE₁ and CE₂) and BHE, BLE and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.


Capacitance

Parameter ^[8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	рF
C _{OUT}	Output capacitance		10	рF

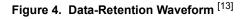

Thermal Resistance

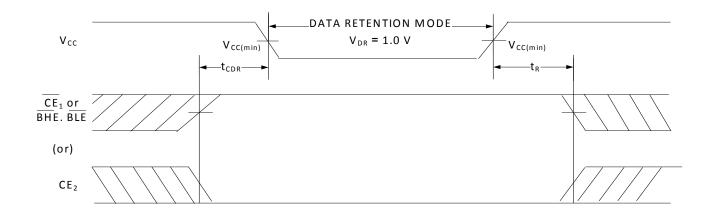
Parameter [8]	Description	Test Conditions	48-ball VFBGA	48-pin TSOP I	Unit
JA		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	31.50	57.99	°C/W
- 30	Thermal resistance (junction to case)		15.75	13.42	°C/W

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms

Parameters	3.0 V	Unit
R1	317	Ω
R2	351	Ω
V _{HIGH}	3.0	V




Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	55 ns (Automotive-E)			45 ns (Unit		
			Min	Typ ^[9]	Мах	Min	Typ ^[9]	Мах	Unit
V _{DR}	V _{CC} for data retention		1	-	-	1	-	Ι	V
I _{CCDR} ^[10]		$\begin{array}{l} 2.2 \text{ V} < \text{V}_{\text{CC}} \leq 3.6 \text{ V} \\ \hline \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \text{ or } \text{CE}_2 \leq 0.2 \text{ V} \\ \text{or (BHE and BLE)} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ \hline \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \text{ or } \text{V}_{\text{IN}} \leq 0.2 \text{ V} \end{array}$	_	5.5	75.0	_	5.5	16.0	μΑ
t _{CDR} ^[11]	Chip deselect to data-retention time		0	-	_	0	-	-	-
t _R ^[12]	Operation-recovery time		55	-	_	45	-	_	ns

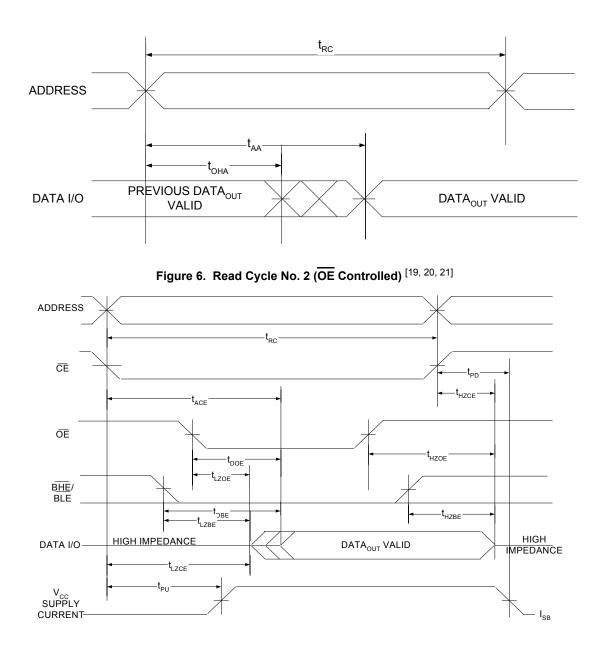
Data Retention Waveform

- Indicates the value for the center of distribution at 3.0 V, 25°C and not 100% tested.
 Chip enables (CE₁ and CE₂) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 Tested initially and after any design or process changes that may affect these parameters.
 Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 µs or stable at V_{CC(min)} ≥ 100 µs.
 BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

$\begin{array}{c c} t_{AA} & Add \\ \hline t_{OHA} & Data \\ \hline t_{ACE} & \overline{CE}_{1} \\ \hline t_{DOE} & \overline{OE} \\ \hline t_{LZOE} & \overline{OE} \\ \hline t_{LZCE} & \overline{CE}_{2} \\ \end{array}$	Description ad cycle time dress to data valid ta hold from address change	Min 55 – 10	Max - 55	Min 45	Max	Unit
$\begin{array}{c c} t_{RC} & Rea \\ t_{AA} & Add \\ t_{OHA} & Data \\ t_{ACE} & CE_{1} \\ t_{DOE} & OE \\ t_{LZOE} & OE \\ t_{LZCE} & CE_{1} \\ \end{array}$	dress to data valid ta hold from address change	-		45		
$\begin{array}{c c} t_{AA} & Add \\ t_{OHA} & Data \\ t_{ACE} & \overline{CE} \\ t_{DOE} & \overline{OE} \\ t_{LZOE} & \overline{OE} \\ t_{HZOE} & \overline{OE} \\ t_{LZCE} & \overline{CE} \\ \end{array}$	dress to data valid ta hold from address change	-		45	_	r
$\begin{array}{c c} t_{OHA} & Data \\ t_{ACE} & \overline{CE}_{1} \\ t_{DOE} & \overline{OE} \\ t_{LZOE} & \overline{OE} \\ t_{LZCE} & \overline{CE}_{1} \\ \end{array}$	ta hold from address change	- 10	55			ns
t _{ACE} CE t _{DOE} OE t _{LZOE} OE t _{HZOE} OE t _{LZCE} CE		10		-	45	ns
t _{DOE} OE t _{LZOE} OE t _{HZOE} OE t _{LZCE} CE	$_{1}$ LOW and CE ₂ HIGH to data valid / \overline{CE} LOW		_	10	-	ns
t _{LZOE} OE t _{HZOE} OE t _{LZCE} CE	· <u> </u>	-	55	-	45	ns
t _{LZOE} OE t _{HZOE} OE t _{LZCE} CE	LOW to data valid / OE LOW	-	25	_	22	ns
t _{HZOE} OE t _{LZCE} CE	LOW to Low Z ^[15]	5	-	5	_	ns
	HIGH to High Z ^[15, 16]	-	20	-	18	ns
t _{HZCE} CE	$_1$ LOW and CE ₂ HIGH to Low Z ^[15]	10	-	10	_	ns
	1 HIGH and CE ₂ LOW to High Z ^[15, 16]	-	20	-	18	ns
t _{PU} CE	1 LOW and CE ₂ HIGH to power-up	0	-	0	_	ns
t _{PD} CE	1 HIGH and CE ₂ LOW to power-down	-	55	-	45	ns
t _{DBE} BLE	E / BHE LOW to data valid	-	55	_	45	ns
t _{LZBE} BLE	E / BHE LOW to Low Z ^[15]	5	-	5	_	ns
	E / BHE HIGH to High Z ^[15, 16]	-	20	_	18	ns
Write Cycle [17]		•				
t _{WC} Writ	ite cycle time	55	_	45	_	ns
t _{SCE} CE	1 LOW and CE ₂ HIGH to write end	40	-	35	_	ns
t _{AW} Add	dress setup to write end	40	-	35	_	ns
t _{HA} Add	dress hold from write end	0	_	0	_	ns
t _{SA} Add	dress setup to write start	0	_	0	_	ns
t _{PWE} WE	pulse width	40	-	35	_	ns
t _{BW} BLE	E / BHE LOW to write end	40	-	35	_	ns
t _{SD} Data	ta setup to write end	25	-	25	_	ns
t _{HD} Data	ta hold from write end	0	-	0	_	ns
t _{HZWE} WE			1	1	1 1	1
t _{LZWE} WE	LOW to High Z ^[15, 16]	-	20	_	18	ns

Notes


- 14. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3 V). Test conditions for the read cycle use output loading shown in AC Test Loads and Waveforms section, unless specified otherwise.</p>

15. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZCE}, t_{HZCE}, t_{HZDE}, and t_{HZWE} is less than t_{LZWE} for any device.
16. t_{HZCE}, t_{HZCE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
17. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write. Any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

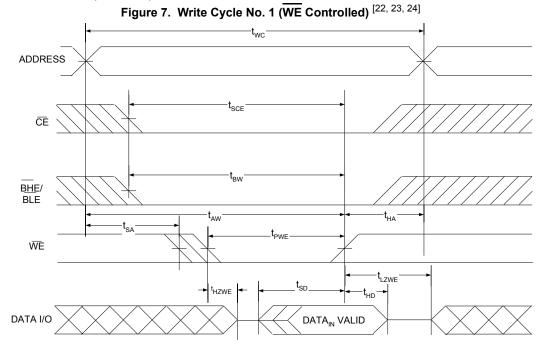
Switching Waveforms

Figure 5. Read Cycle No. 1 of CY62167G (Address Transition Controlled) ^[18, 19]

Notes

18. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} .

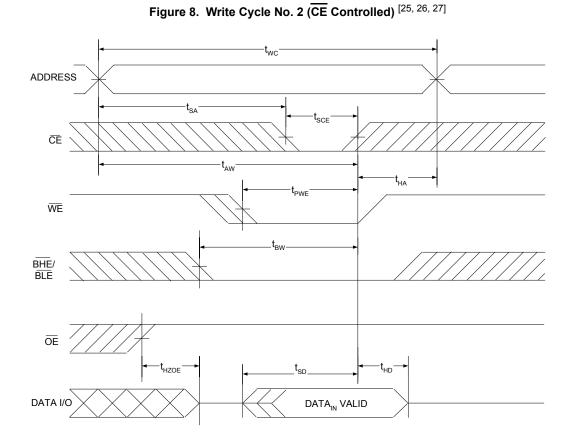
19. WE is HIGH for read cycle.


20. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, CE is HIGH.

21. Address valid prior to or coincident with $\overline{\text{CE}}$ LOW transition.

Switching Waveforms (continued)

Notes


22. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, CE is HIGH.

23. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE}_1 = V_{|L}$, \overline{BHE} or \overline{BLE} or both = $V_{|L}$, and $CE_2 = V_{|H}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{24.} Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

Switching Waveforms (continued)

- 25. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, CE is HIGH.
- 26. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{EE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 27. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

Switching Waveforms (continued)

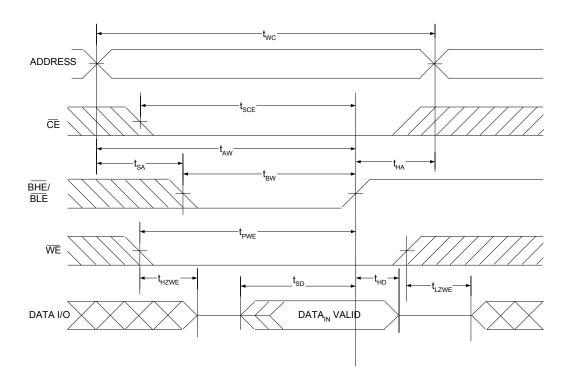
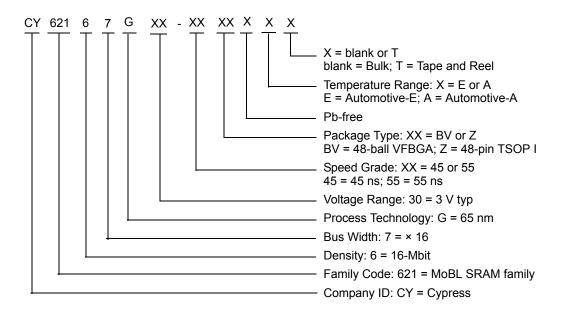


Figure 9. Write Cycle No. 3 (BHE/BLE Controlled, OE LOW) ^[28, 29, 30]

- 28. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 29. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{\parallel}$, $\overline{CE}_1 = V_{\parallel}$, \overline{BHE} or \overline{BLE} or both = V_{\parallel} , and $CE_2 = V_{\parallel}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 30. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

Truth Table – CY62167G

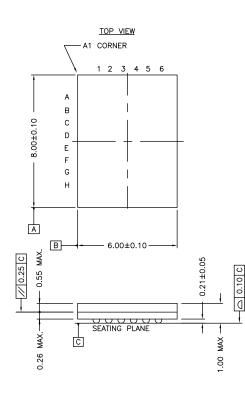
CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[31]	Х	Х	Х	Х	HI-Z	Deselect/Power-down	Standby (I _{SB})
X ^[31]	L	Х	Х	Х	Х	HI-Z	Deselect/Power-down	Standby (I _{SB})
X ^[31]	X ^[31]	Х	Х	Н	Н	HI-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Η	L	Н	L	Data Out (I/O ₀ –I/O ₇); HI-Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Η	L	L	Н	HI-Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	Х	Х	HI-Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); HI-Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	HI-Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})

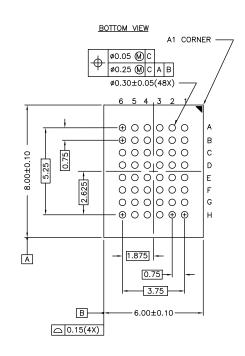

Note 31. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62167G30-55BVXE	51-85150	48-ball VFBGA (6 × 8 × 1 mm) (Pb-free), Package Code: BZ48	Automotive-E Automotive-A
	CY62167G30-55BVXET			
	CY62167G30-55ZXE	51-85183	48-pin TSOP I (12 × 18.4 × 1 mm) (Pb-free),	
	CY62167G30-55ZXET		Package Code: Z48A	
45	CY62167G30-45ZXA	51-85183		
	CY62167G30-45ZXAT		Package Code: Z48A	
	CY62167G30-45BVXA	51-85150	48-ball VFBGA (6 × 8 × 1 mm) (Pb-free),	
	CY62167G30-45BVXAT		Package Code: BZ48	

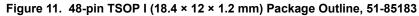
Ordering Code Definitions

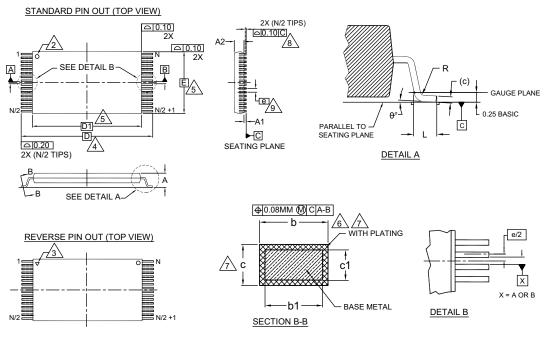




Package Diagram

Figure 10. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline, 51-85150


NOTE:


PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Package Diagram (continued)

SYMBOL	DIMENSIONS		
STMBOL	MIN.	NOM.	MAX.
A	—	—	1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b1	0.17	0.20	0.23
b	0.17	0.22	0.27
c1	0.10	_	0.16
с	0.10	—	0.21
D	20.00 BASIC		
D1	18.40 BASIC		
E	12.00 BASIC		
е	0.	50 BAS	IC
L	0.50	0.60	0.70
θ	0°	_	8
R	0.08	—	0.20
N		48	

NOTES:

- <u>DIMENSIONS ARE IN MILLIMETERS (mm).</u>
- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- 3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- TO BE DETERMINED AT THE SEATING PLANE C-. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- Image: Construction of the second second
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.
- 10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Acronym	Description		
BHE	byte high enable		
BLE	byte low enable		
CE	chip enable		
CMOS	complementary metal oxide semiconductor		
I/O	input/output		
OE	output enable		
SRAM	static random access memory		
VFBGA	very fine-pitch ball grid array		
WE	write enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	Degrees Celsius
MHz	megahertz
μA	microamperes
μS	microseconds
mA	milliamperes
mm	millimeters
ns	nanoseconds
Ω	ohms
%	percent
pF	picofarads
V	volts
W	watts

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*C	5083752	NILE	01/13/2016	Changed status from Preliminary to Final.
*D	5130998	NILE	02/12/2016	Updated Logic Block Diagram – CY62167G. Updated Pin Configurations: Added Note 3 and referred the same note in Figure 2. Updated DC Electrical Characteristics: Updated Note 7. Updated Data Retention Characteristics: Updated Note 10.
*E	5555173	VINI	01/18/2017	Updated Features: Added "AEC-Q100 qualified". Updated Maximum Ratings: Updated Note 5 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Replaced "55 ns (Automotive-E)" with "45 ns (Automotive-A)" in column heading. Replaced "55 ns (Automotive-A)" with "55 ns (Automotive-E)" in column heading. Changed minimum value of V _{OH} parameter from 2.2 V to 2.4 V corresponding to Operating Range "2.7 V to 3.6 V". Changed minimum value of V _{IH} parameter from 2.0 V to 1.8 V corresponding to Operating Range "2.2 V to 2.7 V". Updated Ordering Information: Updated part numbers. Updated Ordering Code Definitions. Updated Package Diagram: spec 51-85183 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review.
*F	5725191	NILE	05/03/2017	Updated DC Electrical Characteristics: Fixed typo in values of I_{IX} and I_{OZ} parameters (both "Min" and "Max" columns Fixed typo in values of I_{SB1} and I_{SB2} parameters (only "Max" column). Updated Data Retention Characteristics: Fixed typo in values of I_{CCDR} parameter (only "Max" column). Updated to new template.