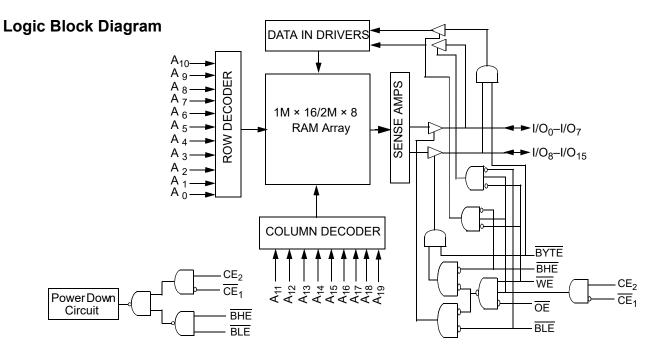
CY62167GN30 MoBL

16-Mbit (1M × 16/2M × 8) Static RAM

Features

- Ultra-low standby power
 Typical standby current: 1.5 μA
 Maximum standby current: 8 μA
- TSOP I package configurable as 1M × 16 or 2M × 8 SRAM
- Very high speed: 45 ns
- Temperature ranges □ Industrial: –40 °C to +85 °C
- Wide voltage range: 2.2 V to 3.6 V
- **Easy** memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} Features
- Automatic power-down when deselected
- CMOS for optimum speed and power
- Offered in Pb-free 48-ball VFBGA and 48-pin TSOP I packages


Functional Description

The CY62167GN30 is a high performance CMOS static RAM organized as 1M words by 16 bits or 2M words by 8 bits. This device features an advanced circuit design that provides an ultra low active current. Ultra low active current is ideal for providing

More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption by 99 percent when addresses are not toggling. Place the device into standby mode when deselected (CE_1 HIGH or CE_2 LOW or both BHE and BLE are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when: the device is deselected (CE_1 HIGH or CE_2 LOW), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or a write operation is in progress (CE_1 LOW, CE_2 HIGH and WE LOW).

To write to the device, tak<u>e</u> Chip Enables (CE₁ LOW and CE₂ <u>HIGH</u>) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from the I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₉).

To read from the device, take <u>Chip</u> Enables (\overline{CE}_1 LOW and CE_2 HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See Truth Table on page 12 for a complete description of read and write modes.

Cypress Semiconductor Corporation Document Number: 002-28515 Rev. *A 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised March 16, 2020

CY62167GN30 MoBL

Contents

Pin Configuration	
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	13
Ordering Code Definitions	
Package Diagrams	14
Acronyms	16
Document Conventions	16
Units of Measure	
Document History Page	17
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

Pin Configuration

Figure 1. 48-ball VFBGA pinout (Top View) ^[1, 2]

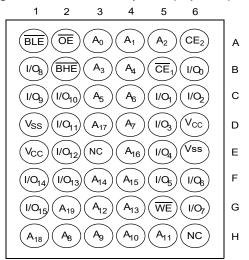


Figure 2. 48-pin TSOP I pinout (Top View) ^[2, 3]

0	
A15 🗖 1	48 = <u>A16</u>
A14 2 A13 3	47 🗖 BYTE
A14 = 2 A13 = 3	46 🗖 Vss
A12 🗖 4	47 BYTE 46 Vss 45 VO15/A20 44 V/015/A20 44 V/07
A11 = 5 A10 = 6	44 🖿 1/07
A10 🗖 6	43 🗖 I/O14
A9 🗖 7	42 🗖 1/06
A8 🗖 8	41 🗖 1/013
A19 🗖 9	40 🗖 1/05
$\begin{array}{c} NC & \blacksquare & 10 \\ WE & \blacksquare & 11 \\ CE_2 & \blacksquare & 12 \\ NC & \blacksquare & 13 \end{array}$	40 1 1/05 39 1 1/012
WE 🗖 11	38 🗖 1/04
CE ₂ = 12	37 🗖 Vcc
NC = 13	36 🗖 1/011
BHE 🗖 14	35 🗖 1/03
BLE 🖴 15	38 ± 1/04 37 ± 1/0c 36 ± 1/011 35 ± 1/03 34 ± 1/010
A18 🗖 16	33 🗖 1/02
A17 🖬 17	32 🗖 1/09
A7 🖿 18	31 🗖 1/01
A6 🗖 19	30 🗖 1/08
A5 🗖 20	29 🗖 1/00
A4 🗖 21	28 🗖 OF
A3 🖴 22	27 🗖 Vss
A2 🗖 23	26 🗖 CE4
A1 24	27 = <u>Vss</u> 26 = CE ₁ 25 = A0
	//0

Product Portfolio

		Power Dissipation			Power Dissipation						
Product	Range	V _{CC} Range (V) Speed Operating I _{CC} (mA)		V _{CC} Range (V)		Standby					
Troduct	Range				(ns)	f = 1 MHz f = f _{max} Standb		otanuby	oy I _{SB2} (μΑ)		
		Min	Typ ^[4]	Мах		Typ ^[4]	Max	Typ ^[4]	Max	Typ ^[4]	Max
CY62167GN30 ^[5, 6]	Industrial	2.2	3.0	3.6	45	7	9	29	35	1.5	8

Notes

1. Ball H6 for the VFBGA package can be used to upgrade to a 32M density.

2. NC pins are not connected on the die.

4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C. 5. This device offers improved I_{CC} , I_{BE1} and I_{SB2} specifications compared to the previous revision with same marketing part number.

For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

^{3.} The BYTE pin in the <u>48-pin</u> TSOP I package has to be tied to V_{CC} to use the device as a <u>1M × 16 SRAM</u>. The 48-pin TSOP I package can also be used as a 2M × 8 SRAM by tying the BYTE signal to V_{SS} . In the 2M × 8 configuration, Pin 45 is A20, while BHE, BLE and I/O₈ to I/O₁₄ pins are not used.

CY62167GN30 MoBL

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to + 150 °C
Ambient temperature with power applied55 °C to + 125 °C
Supply voltage to ground potential $^{[7,\ 8]}$ 0.3 V to V_{CC(max)} + 0.3 V
DC voltage applied to outputs in High Z state ^[7, 8] 0.3 V to $V_{CC(max)}$ + 0.3 V

DC input voltage ^[7, 8] 0	0.3 V to V _{CC(max)} + 0.3 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device Range	Ambient Temperature	V_{cc} ^[9]
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

Electrical Characteristics

Over the Operating Range

Deremeter	Description	Test Cond	tions		Unit		
Parameter	Description	Test Condi	Test conditions			Max	Unit
V _{OH}	Output HIGH voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OH} = -0.1 mA	2.0	-	-	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6	I _{OH} = -1.0 mA	2.4	-	-	
V _{OL}	Output LOW voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OL} = 0.1 mA	_	-	0.4	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6	I _{OL} = 2.1 mA	_	-	0.4	
V _{IH}	Input HIGH voltage	2.2 <u><</u> V _{CC} <u><</u> 2.7		1.8	-	V _{CC} + 0.3	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6		2	-	V _{CC} + 0.3	
V _{IL}	Input LOW voltage	2.2 ≤ V _{CC} ≤ 2.7		-0.3	-	0.6	V
		2.7 <u>≤</u> V _{CC} <u>≤</u> 3.6		-0.3	-	0.8	
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$		-1	-	+1	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}$, Out	put disabled	-1	-	+1	μA
I _{CC} ^[11, 12]	V _{CC} operating supply current	f = 22.22 MHz (45 ns)	$V_{CC} = V_{CC(max)}$	_	29	35	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	-	7	9	mA
I _{SB1} [11, 12, 13, 14]	Automatic power down current – CMOS inputs		$CE_2 \le 0.2 V \text{ or}$ c = 0.2 V, $c \le 0.2 V,$ $c \le 0.2 V,$ data only), $c C = V_{CC(max)}$	-	1.5	8	μΑ
I _{SB2} ^[11, 12, 14]	Automatic Power-down	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$	25 °C ^[10]	-	1.5	3	μA
	Current – CMOS Inputs V_{CC} = 2.2 V to 3.6 V and 4.5 V to 5.5 V	CE <u>₂ < 0</u> .2 V or (BHE and BLE) <u>></u>	40 °C ^[10]	-	-	3.5	
	4.5 V to 5.5 V	$V_{cc} = 0.2 V_{c}$	70 °C ^[10]	_	-	6.5	
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V,}$ $f = 0, V_{CC} = V_{CC(max)}$	85 °C	-	-	8.0	

Notes

Notes
7. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
8. V_{IH(max)} = V_{CC} + 2V for pulse durations less than 20 ns.
9. Full Device AC operation assumes a 100 µs ramp time from 0 to V_{CC(min)} and 200 µs wait time after V_{CC} stabilization.
10. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
11. This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.
12. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

This parameter is guaranteed by design and not tested.
 Chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB1}/I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

Capacitance

Parameter ^[15]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[15]	Description	Test Conditions	48-ball VFBGA	48-pin TSOP I	Unit
JA		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	31.50	57.99	°C/W
Θ ^{JC}	Thermal resistance (junction to case)		15.75	13.42	°C/W

AC Test Loads and Waveforms

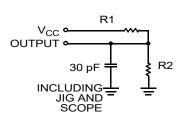
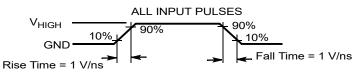
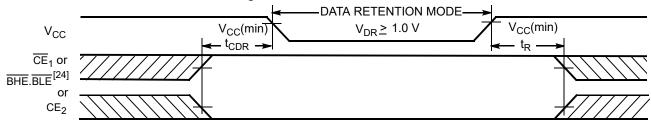



Figure 3. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	1.8 V	2.5 V	3.0 V	5.0 V	Unit
R ₁	13500	16667	1103	1800	Ω
R ₂	10800	15385	1554	990	Ω
R _{TH}	6000	8000	645	639	Ω
V _{TH}	0.80	1.20	1.75	1.77	V
V _{HIGH}	1.8	2.5	3.0	5.0	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[16]	Max	Unit
V _{DR}	V _{CC} for data retention		1	-	-	V
I _{CCDR} ^[17, 18, 19, 20]	Data retention current	V _{CC} = 2.2 V to 3.6 V,	-	-	8	μA
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V or}$				
		$(\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \ge V_{\text{CC}} - 0.2 \text{ V},$				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
		1.2 V <u>≤</u> V _{CC} ≤ 2.2 V,	_	_	16	
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V or}$				
		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
t _{CDR} ^[21]	Chip deselect to data retention time		0	_	_	-
t _R ^[22, 23]	Operation recovery time		45	_	_	ns

Data Retention Waveform

Notes

- 16. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
- 17. Chip enables (CE1 and CE2), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the ISB1/ISB2/ICCDR spec. Other inputs can be left floating.
- 18. I_{CCDR} is guaranteed only after the device is first powered up to $V_{CC(min)}$ and then brought down to V_{DR} . 19. This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number. 20. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

- 21. Tested initially and after any design or process changes that may affect these parameters. 22. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \,\mu s$ or stable at $V_{CC(min)} \ge 100 \,\mu s$. 23. <u>These parameters are guaranteed</u> by design and are not tested. 24. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Parameter ^[25]	Description	45	45 ns		
Parameter	Description	Min	Max	- Unit	
Read Cycle		·		-	
t _{RC}	Read cycle time	45.0	-	ns	
t _{AA}	Address to data valid	-	45.0	ns	
t _{OHA}	Data hold from address change	10.0	-	ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	-	45.0	ns	
t _{DOE}	OE LOW to data valid	-	22.0	ns	
t _{LZOE}	OE LOW to Low Z ^[26, 27]	5.0	-	ns	
t _{HZOE}	OE HIGH to High Z [26, 27, 28]	-	18.0	ns	
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[26, 27]	10.0	-	ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[26, 27, 28]	-	18.0	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[29]	0	-	ns	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[29]	-	45.0	ns	
t _{DBE}	BLE / BHE LOW to data valid	-	45.0	ns	
t _{LZBE}	BLE / BHE LOW to Low Z [26, 27]	5.0	-	ns	
t _{HZBE}	BLE / BHE HIGH to High Z ^[26, 27, 28]	-	18.0	ns	
Write Cycle ^{[30, 31}]		•	-	
t _{WC}	Write cycle time	45	_	ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	_	ns	
t _{AW}	Address setup to write end	35	-	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	-	ns	
t _{PWE}	WE pulse width	35	-	ns	
t _{BW}	BLE / BHE LOW to write end		_	ns	
t _{SD}	Data setup to write end		_	ns	
t _{HD}	Data hold from write end	0	-	ns	
t _{HZWE}	WE LOW to High Z [26, 27, 28]	-	18	ns	
t _{LZWE}	WE HIGH to Low Z ^[26, 27]	10	-	ns	

Notes

29. These parameters are guaranteed by design and are not tested.

30. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write 31. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, \overline{OE} LOW) should be equal to the sum of t_{HZWE} and t_{SD} .

^{25.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 5. 26. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZOE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device. 27. Tested initially and after any design or process changes that may affect these parameters. 28. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) $^{[32,\;33]}$

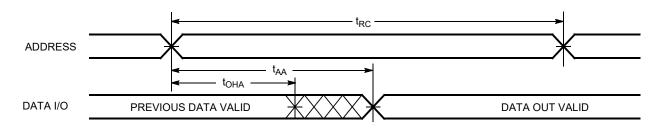
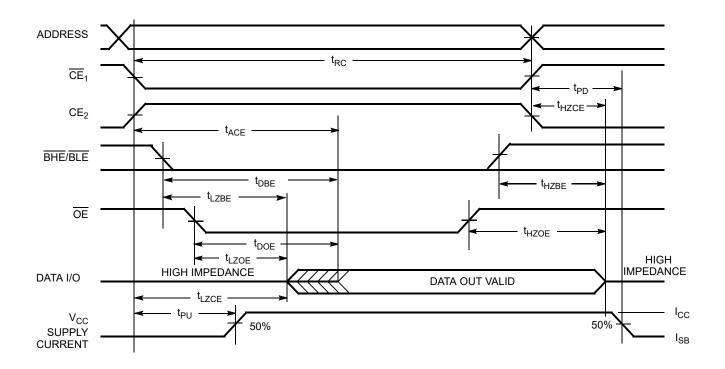



Figure 6. Read Cycle No. 2 (OE Controlled) ^[33, 34]

Notes

32. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.

33. WE is HIGH for read cycle. 34. Address valid before or similar to \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

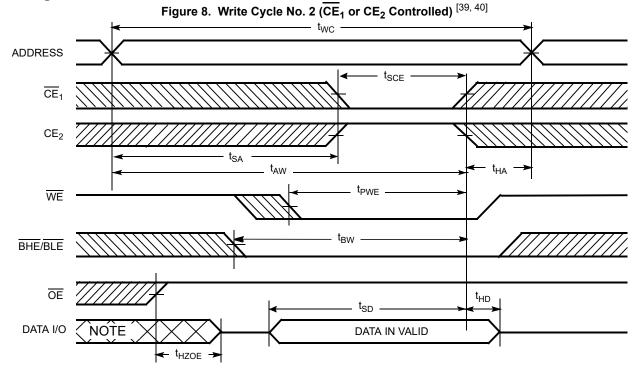
Switching Waveforms (continued)



Figure 7. Write Cycle No. 1 (WE Controlled) [35, 36, 37]

Notes

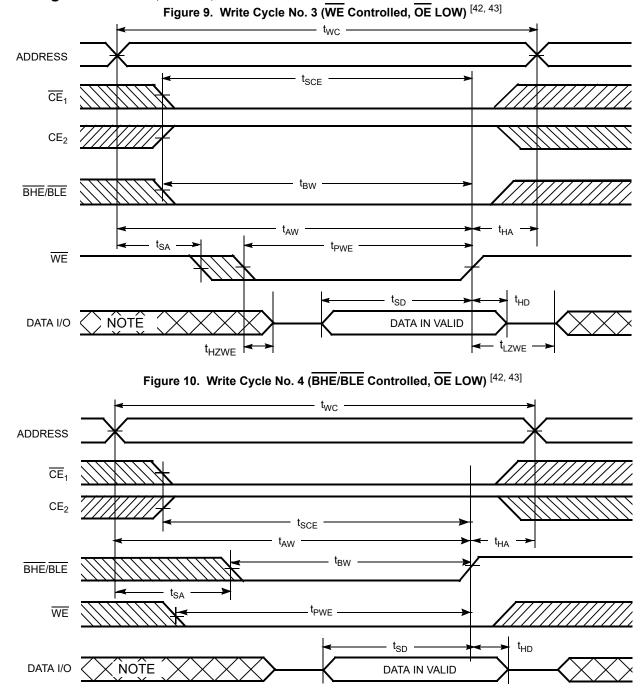
^{35.} The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 36. Data I/O is high impedance if $\overline{OE} = V_{IH}$.


^{37.} If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{H}$, the output remains in a high impedance state.

^{38.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Notes


39. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{||L}$, \overline{BHE} or \overline{BLE} or both = $V_{||L}$, and $CE_2 = V_{||L}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 40. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{||H}$, the output remains in a high impedance state.

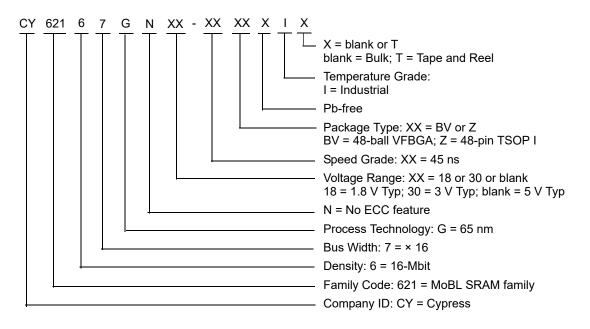
41. During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

- **Notes** 42. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state. 43. The minimum write cycle pulse width should be equal to the sum of t_{HZWE} and t_{SD} . 44. During this period the I/Os are in output state. Do not apply input signals.

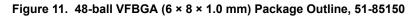
Truth Table

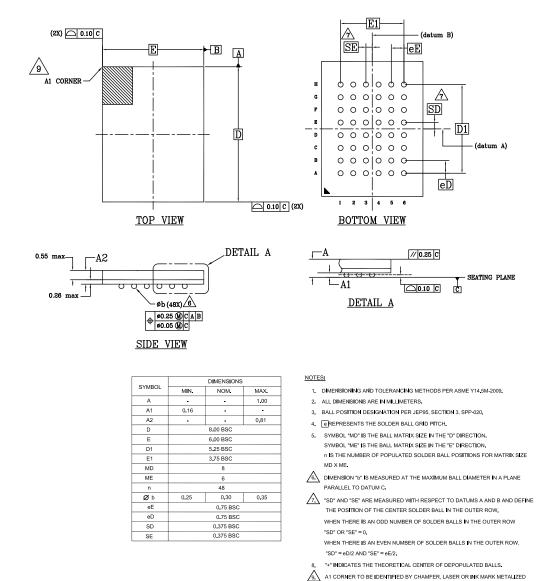
CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[45]	Х	Х	X ^[45]	X ^[45]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[45]	L	Х	Х	X ^[45]	X ^[45]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[45]	X ^[45]	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	Х	Х	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})


Note 45. The 'X' (Don't care) state for the chip enables and Byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

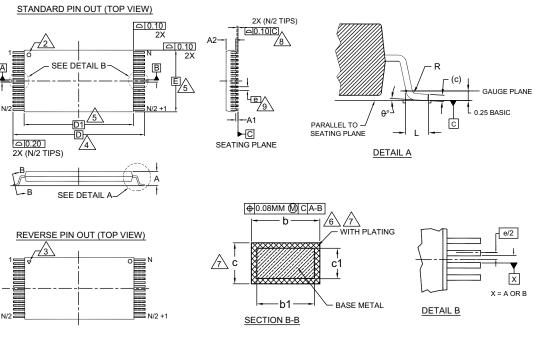
Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type	Operating Range
45	2.2 V–3.6 V	CY62167GN30-45BVXI		48-ball VFBGA (6 × 8 × 1 mm),	Industrial
		CY62167GN30-45BVXIT		Package Code: BV48	
		CY62167GN30-45ZXI	51-85183	48-pin TSOP I (Pb-free)	
		CY62167GN30-45ZXIT			


Ordering Code Definitions



Package Diagrams



51-85150 *I

MARK, INDENTATION OR OTHER MEANS.

Package Diagrams (continued)

Figure 12.	48-pin TSOP I	$(12 \times 18.4 \times 1.0 \text{ mm})$) Package Outline, 5	1-85183

SYMBOL	DIMENSIONS			
STINBOL	MIN.	NOM.	MAX.	
A	_	—	1.20	
A1	0.05	—	0.15	
A2	0.95	1.00	1.05	
b1	0.17	0.20	0.23	
b	0.17	0.22	0.27	
c1	0.10	-	0.16	
с	0.10	—	0.21	
D	20.00 BASIC			
D1	18.40 BASIC			
E	12.00 BASIC			
е	0.50 BASIC			
L	0.50	0.60	0.70	
θ	0°	—	8	
R	0.08	—	0.20	
N	48			

NOTES:

- DIMENSIONS ARE IN MILLIMETERS (mm).
 - PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- A PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- TO BE DETERMINED AT THE SEATING PLANE C-. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- DIMENSIONS D1 AND E D0 NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.
- 10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

	Document Title: CY62167GN30 MoBL, 16-Mbit (1M × 16/2M × 8) Static RAM Document Number: 002-28515					
Rev.	ECN No.	Submission Date	Description of Change			
**	6680984	09/24/2019	New data sheet.			
*A	6832216	03/16/2020	Updated Product Portfolio: Updated Note 5. Updated Electrical Characteristics: Updated Note 11. Updated Data Retention Characteristics: Updated Note 19. Updated to new template.			