

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

CY62177G30/CY62177GE30 MoBL

32-Mbit (2M words × 16-bit/ 4M words × 8-bit) Static RAM with Error-Correcting Code (ECC)

Features

- Ultra-low standby current
 □ Typical standby current: 3 µA
 □ Maximum standby current: 19 µA
- High speed: 55 ns
- Embedded error-correcting code (ECC) for single-bit error correction^[1]
- Operating voltage range: 2.2 V to 3.6 V
- 1.5-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- 48-pin TSOP I package configurable as 2M × 16 or 4M × 8 SRAM
- Available in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

CY62177G30 and CY62177GE30 are high-performance CMOS, low-power (MoBL[®]) SRAM devices with embedded ECC^[2]. Both devices are offered in single and dual chip enable options and in multiple pin configurations. The CY62177GE30 device includes an ERR pin that signals a single-bit error-detection and correction event during a read cycle.

To access devices with a single chip enable input, assert the chip enable (\overline{CE}) input LOW. To access dual chip enable devices, assert both chip enable inputs – \overline{CE}_1 as LOW and CE_2 as HIGH.

To perform data writes, assert the Write Enable (\overline{WE}) input LOW, and provide the data and address on the device data pins (I/O₀

through I/O₁₅) and address pins (A₀ through A₂₀) respectively. The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs control byte writes and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable ($\overline{\text{OE}}$) input and provide the required address on the address lines. You can access read data on the I/O lines (I/O₀ through I/O₁₅). To perform byte accesses, assert the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are <u>placed</u> in a high-impedance state when the device is deselected (CE HIGH for a single chip enable device and \overline{CE}_1 HIGH / CE₂ LOW for a <u>dual chip</u> enable device), or the control signals are de-asserted (OE, BLE, BHE).

These devices have a unique Byte Power-down feature where, if both the Byte Enables (\overline{BHE} and \overline{BLE}) are disabled, the devices seamlessly switch to the standby mode irrespective of the state of the chip enables, thereby saving power.

On the CY62177GE30 devices, the detection and correction of a single-bit error in the accessed location is indicated by the assertion of the ERR output (ERR = High). See the Truth Table – CY62177G30/CY62177GE30 on page 15 for a complete description of read and write modes.

The CY62177G30 and CY62177GE30 devices are available in a Pb-free 48-pin TSOP I package and 48-ball VFBGA packages. The logic block diagrams are on page 2.

The device in the 48-pin TSOP I package can also be configured to function as a 4M words \times 8 bit device. Refer to the Pin Configurations section for details.

For a complete list of related documentation, click here.

Product Portfolio

					Current Consumption			
Product	Features and Options	Options gurations Bango Var Bango (V) Speed	Operating I _{CC} , (mA)		Standby, I _{SB2} (µA)			
FIGUUCI	section)	Range	VCC Italige (V)	(ns)	f = f _{max} Max		Tvn ^[3]	Max
					Typ ^[3]	Max	ιγp	Max
CY62177G30/C Y62177GE30	Single or dual Chip Enables Optional ERR pin	Industrial	2.2 V–3.6 V	55	35	45	3	19

Notes

1. SER FIT rate <0.1 FIT/Mb. Refer to AN88889 for details.

2. This device does not support automatic write-back on error detection.

3. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.

Cypress Semiconductor Corporation Document Number: 002-24704 Rev. *C 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised February 9, 2021

Logic Block Diagram – CY62177G30

Logic Block Diagram – CY62177GE30

Contents

Pin Configuration – CY62177G30	4
Pin Configuration – CY62177GE30	5
Maximum Ratings	7
Operating Range	7
DC Electrical Characteristics	7
Capacitance	8
Thermal Resistance	8
AC Test Loads and Waveforms	8
Data Retention Characteristics	9
Data Retention Waveform	9
Switching Characteristics	10
Switching Waveforms	11
Truth Table - CY62177G30/CY62177GE30	15
ERR Output – CY62177GE30	15

Ordering Information	16
Ordering Code Definitions	16
Package Diagrams	17
Acronyms	20
Document Conventions	20
Units of Measure	20
Document History Page	21
Sales, Solutions, and Legal Information	22
Worldwide Sales and Design Support	22
Products	22
PSoC® Solutions	22
Cypress Developer Community	22
Technical Support	22

Pin Configuration – CY62177G30

Figure 2. 48-pin TSOP I Pinout (Dual Chip Enable without ERR) – CY62177G30^[4, 5]

0	10
A15 🗖 1	48 🗖 <u>A16</u>
A14 🔜 2	47 📥 BYTE
A13 👝 3	46 🗖 Vss
A12 📥 4	45 🗖 I/O15/A21
A11 🗖 5	44 🗖 1/07
A10 🖬 6	43 = I/O14
A9 🗖 7	42 🗖 1/06
A8 🗖 8	41 🖬 1/013
A19 🗖 9	40 🗖 1/05
A20 🗖 10	39 🗖 1/012
WE 🖬 11	38 - 1/04
CE ₂ = 12	37 🗖 Vcc
NC 🗖 13	36 🗖 I/O11
BHE 🗖 14	35 🗖 1/03
BLE 🗖 15	34 🗖 1/010
A18 🗖 16	33 🗖 1/O2
A17 📥 17	32 🗖 1/09
A7 🗖 18	31 🗖 1/01
A6 🗖 19	30 🗖 1/08
A5 🖿 20	29 🗖 1/00
A4 🖿 21	28 🗖 OE
A3 🗖 22	27 🗖 Vss
A2 🗖 23	26 🗖 CE1
A1 = 24	25 🗖 A0

- 4. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
- 5. Tie the BYTE pin in the 48-pin TSOP I package to V_{CC} to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M × 8 configuration, pin 45 is the extra address line A21, while BHE, BLE, and I/O₈ to I/O₁₄ pins are not used and can be left floating.

Pin Configuration – CY62177GE30

Figure 3. 48-ball VFBGA/BGA Pinout (Single Chip Enable with ERR) – CY62177GE30^[6, 7]

Figure 4. 48-ball VFBGA/BGA Pinout (Dual Chip Enable with ERR) – CY62177GE30^[6, 7]

^{6.} NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin

configuration. 7. ERR is an Output pin. If not used, this pin should be left floating.

Pin Configuration – CY62177GE30 (continued)

Figure 5. 48-pin TSOP I Pinout (Dual Chip Enable with ERR) – CY62177GE30^[8, 9]

0	
A15 🖬 1	48 🗖 A16
A14 🗕 2	47 BYTE
A13 - 3	46 - Vss
A12 - 4	45 HIO15/A21
A11 = 5	44 1/07
A10 - 6	43 1/014
A9 7	42 1/06
A8 8	41 1/013
A19 = 9	40 1/05
A20 = 10	39 1/012
WE = 11	38 1/04
CEo 12	37
ERR 13	36 1/011
BHE 14	35 1/03
BIE = 15	34 1/010
A18 🗖 16	33 102
A17 - 17	32 1/09
A7 🗖 18	31 - 1/01
A6 = 19	30 1/08
A5 = 20	29 1/00
A4 = 21	
A3 = 22	27 🗖 Vss
A2 = 23	
A1 = 24	25 = 40
	20 - AU

NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
 Tie the <u>BYTE pin in the 48-pin TSOP I package to V_{CC} to use the device as a 2M × 16 SRAM. The 48-pin <u>TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M × 8 configuration, pin 45 is the extra address line A21, while the <u>BHE</u>, <u>BLE</u>, and I/O₈ to I/O₁₄ pins are not used and can be
</u></u> left floating.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature	–65 °C to + 150 °C
Ambient temperature with power applied	–55 °C to + 125 °C
Supply voltage to ground potential	–0.5 V to V _{CC} + 0.5 V
DC voltage applied to outputs in High Z state ^[10]	–0.5 V to V _{CC} + 0.5 V

DC input voltage ^[10]	–0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

Grade	Ambient Temperature	V_{cc} ^[11]
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

DC Electrical Characteristics

Over the operating range of -40 °C to 85 °C

Deveneter	Description Test Conditions			55 ns			L lus i t	
Parameter	Desc	ription	lest Condit	ions	Min	Typ ^[12]	Max	Unit
V _{OH}	Output HIGH	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = -0.1	mA	2.0	_	_	V
	voltage	2.7 V to 3.6 V	V_{CC} = Min, I_{OH} = -1.0	mA	2.4	_	_	
V _{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 m	A	_	-	0.4	
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 m	A	_	_	0.4	
V _{IH}	Input HIGH	2.2 V to 2.7 V	-		1.8	_	V _{CC} + 0.3	
	voltage ^[10]	2.7 V to 3.6 V	-		2.0	_	V _{CC} + 0.3	
V _{IL}	Input LOW	2.2 V to 2.7 V	-		-0.3	_	0.6	
	voltage ^[10]	2.7 V to 3.6 V	-		-0.3	_	0.8	
I _{IX}	Input leakage c	urrent	$GND \leq V_{IN} \leq V_{CC}$		-1.0	_	+1.0	μA
I _{OZ}	Output leakage	current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , O	utput disabled	-1.0	_	+1.0	
I _{CC}	V _{CC} operating s	supply current	V _{CC} = Max,	f=22.22 MHz	_	35.0	45.0	mA
			I _{OUT} = 0 mA,	(45 ns)				
			CMOS levels	f = 1 MHz	-	10.0	18.0	
I _{SB1} ^[13]	Automatic Powe	er-down	$\overline{CE}_{4} \ge V_{co} = 0.2 V \text{ or } ($	$E_{0} \leq 0.2 V$	-	3.0	19.0	μA
	Current – CMO	S Inputs;	or (BHF and \overline{BIF}) > V	$c_{2} = 0.2 V_{1}$				
	V_{CC} = 2.2 V to 3	3.6 V	$V_{INI} > V_{CC} - 0.2 V. V_{INI}$	< 0.2 V.				
			$f = f_{max}$ (address and d	ata only).				
			$f = 0$ (\overline{OE} , and \overline{WE}), V ₀	$C_{C} = V_{CC(max)}$				
I _{SB2} ^[13]	Automatic Powe	er-down			_	3.0	19.0	μA
	Current – CMO	S Inputs	$CE_1 \ge V_{CC} = 0.2V \text{ or } C$	$E_2 \le 0.2 \ \text{V}$ OI				
	V _{CC} = 2.2 V to 3	3.6 V	$(\text{DHE all UDLE}) \ge V_{CC}$	-0.2 V,				
			$v_{\text{IN}} \ge v_{\text{CC}} - 0.2 \text{ v or } \text{v}$	IN ≦ 0.2 V,				
			$T = 0, V_{CC} = V_{CC(max)}$					

- 10. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 11. Full device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 400-µs wait time after V_{CC} stabilizes to its operational value.
 12. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
 13. The I_{SB2} maximum limits at 25 °C are guaranteed by design and not 100% tested.

Capacitance

Parameter ^[14]	Description	Test Conditions	Мах	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	15.0	pF
C _{OUT}	Output capacitance		15.0	

Thermal Resistance

Parameter ^[14]	Description	Test Conditions	48-ball VFBGA	48-ball FBGA	48-pin TSOP I	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer	54.8	51.5	50.98	°C/W
Θ ^{JC}	Thermal resistance (junction to case)	printed circuit board	11.9	7.8	9.4	

AC Test Loads and Waveforms

Figure 6. AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	
R _{TH}	8000	645	
V _{TH}	1.20	1.75	V
V _{HIGH}	2.5	3.0	

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[15]	Max	Unit
V _{DR}	V _{CC} for data retention	-	1.5	-	-	V
I _{CCDR} ^[16, 17]	Data retention current	$ \begin{array}{l} \underline{2.2} \ V \leq V_{CC} \leq 3.6 \ V \\ \overline{CE}_1 \geq V_{CC} - 0.2 \ V \ \text{or} \ CE_2 \leq 0.2 \ V \\ \text{or} \ (\overline{BHE} \ \text{and} \ \overline{BLE}) \geq V_{CC} - 0.2 \ V, \\ V_{\text{IN}} \geq V_{CC} - 0.2 \ V \ \text{or} \ V_{\text{IN}} \leq 0.2 \ V \end{array} $	_	3.0	19.0	μA
		$ \begin{array}{l} 1.5 \text{ V} \leq \text{V}_{CC} \leq 2.2 \text{ V}, \\ \hline \text{CE}_1 \geq \text{V}_{CC} - 0.2 \text{ V} \text{ or } \text{CE}_2 \leq 0.2 \text{ V} \\ \text{or (BHE and BLE)} \geq \text{V}_{CC} - 0.2 \text{ V}, \\ \hline \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.2 \text{ V} \text{ or } \text{V}_{\text{IN}} \leq 0.2 \text{ V} \end{array} $	_	_	20.0	
t _{CDR} ^[18]	Chip deselect to data retention time	_	0.0	_	_	-
t _R ^[18, 19]	Operation recovery time	-	55	_	-	ns

Data Retention Waveform

- 15. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
 16. Chip enables (CE₁ and CE₂) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 17. I_{CCDR} is guaranteed only after the device is first powered up to V_{CC(min)} and then brought down to V_{DR}.
 18. These parameters are guaranteed by design and are not tested.

- 19. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \ge 400 μ s or stable at V_{CC(min)} \ge 400 μ s. 20. BHE BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Paramotor ^[21]	Description	55	55 ns		
Falameter	Description	Min	Max	onne	
Read Cycle		·			
t _{RC}	Read cycle time	55.0	-	ns	
t _{AA}	Address to data valid / Address to ERR valid	-	55.0		
t _{OHA}	Data hold from address change / ERR hold from address change	10.0	-		
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to data valid / \overline{CE} LOW to ERR valid	-	55.0		
t _{DOE}	OE LOW to data valid / OE LOW to ERR valid	-	25.0		
t _{LZOE}	OE LOW to Low Z ^[22, 23]	5.0	_		
t _{HZOE}	OE HIGH to High Z ^[22, 23, 24]	-	18.0		
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[22, 23]	10.0	_		
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[22, 23, 24]	_	18.0		
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[25]	0.0	_		
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[25]		55.0		
t _{DBE}	BLE / BHE LOW to data valid	_	55.0]	
t _{LZBE}	BLE / BHE LOW to Low Z [22]	5.0	_		
t _{HZBE}	BLE / BHE HIGH to High Z ^[22, 24]	_	18.0		
Write Cycle [26	, 27]		•		
t _{WC}	Write cycle time	55.0	_	ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	40.0	_		
t _{AW}	Address setup to write end	40.0	_		
t _{HA}	Address hold from write end	0	_		
t _{SA}	Address setup to write start	0	_		
t _{PWE}	WE pulse width	40.0	_		
t _{BW}	BLE / BHE LOW to write end	40.0	_		
t _{SD}	Data setup to write end	25.0	_		
t _{HD}	Data hold from write end		-		
t _{HZWE}	WE LOW to High Z ^[22, 23, 24]		18.0		
t _{LZWE}	WE HIGH to Low Z ^[22, 23]	10.0	-		

- 21. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use the output loading shown in Figure 6 on page 8, unless specified otherwise.
- 22. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device. 23. Tested initially and after any design or process changes that may affect these parameters.
- 24. t_{HZOE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
- 25. These parameters are guaranteed by design and are not tested.
- 26. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 27. The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 8. Read Cycle No. 1 of CY62177G30 (Address Transition Controlled) ^[28, 29]

Figure 9. Read Cycle No. 1 of CY62177GE30 (Address Transition Controlled) ^[28, 29]

Notes 28. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} , or both = V_{IL} . 29. \overline{WE} is HIGH for read cycle.

Switching Waveforms (continued)

Figure 10. Read Cycle No. 2 (OE Controlled) [30, 31, 32, 34]

- Notes 30. WE is HIGH for read cycle.
- 31. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.
- 32. Address valid prior to or coincident with \overline{CE} LOW transition.
- 33. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE}_1 = V_{|L}$, \overline{BHE} or \overline{BLE} , or both = $V_{|L}$, and $CE_2 = V_{|H}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 34. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 35. During this period, the I/Os are in the output state. Do not apply input signals.
- 36. The minimum write cycle pulse width should be equal to the sum of t_{HZWE} and t_{SD} .

Switching Waveforms (continued)

- 37. Eor all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
- 38. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 39. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 40. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 13. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [41, 42, 43]

Figure 14. Write Cycle No. 5 (WE Controlled) [41, 42, 43]

- 41. Eor all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
 42. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. terminates the write.
- 43. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 44. During this period, the I/Os are in output state. Do not apply input signals.

BYTE ^[45]	CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power	Configuration
X ^[46]	Н	X ^[46]	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})	4M × 8/2M × 16
Х	X ^[46]	L	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})	4M × 8/2M × 16
Х	X ^[46]	X ^[46]	Х	Х	Н	Н	High-Z	Deselect/Power-down	Standby (I _{SB})	2M × 16
Н	L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	L	Н	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	Н	L	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})	2M × 16
Н	L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
Н	L	Η	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High-Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
н	L	Н	L	Х	L	Н	High-Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})	2M × 16
L	L	Н	Н	L	Х	Х	Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})	2M × 16
L	L	Н	Н	Н	Х	Х	High-Z	Output disabled	Active (I _{CC})	2M × 16
L	L	Н	L	Х	Х	Х	Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})	4M × 8

Truth Table - CY62177G30/CY62177GE30

ERR Output – CY62177GE30

Output ^[47]	Mode
0	Read operation, no single-bit error in the stored data.
1	Read operation, single-bit error detected and corrected.
High-Z	Device deselected / outputs disabled / Write operation

Notes

46. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted. 47. ERR is an Output pin. If not used, this pin should be left floating.

^{45.} This pin is available only in the 48-pin TSOP I package. Tie the BYTE to V_{CC} to configure the device in the 2M × 16 option. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by tying the BYTE signal to V_{SS}.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	ERR Pin / Ball	Operating Range
55 2.2 V–3.6 V	CY62177G30-55BAXI	51 85101	48-ball FBGA		No	Industrial	
	CY62177G30-55BAXIT	51-05191					
	CY62177G30-55BKXI	E1 0E102	48-ball VFBGA				
	CY62177G30-55BKXIT	51-65195		Dual Chip Enable			
	CY62177G30-55ZXI						
		CY62177G30-55ZXIT	51-85183	51-85183 48-pin TSOP I			
		CY62177GE30-55ZXI				Yes	

Ordering Code Definitions

Package Diagrams

Figure 15. 48-ball FBGA (8 × 9.5 × 1.2 mm) Package Outline, 51-85191

Package Diagrams (continued)

- SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS. <u>/9</u>. 10.
 - JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Package Diagrams (continued)

Figure 17. 48-pin FBGA (6 × 8 × 1.2 mm) Package Outline, 51-85193

REFERENCE JEDEC MO-207

51-85193 *E

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary metal oxide semiconductor
I/O	Input/output
OE	Output Enable
SRAM	Static random access memory
TSOP	Thin small outline package
VFBGA	Very fine-pitch ball grid array
WE	Write Enable

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY62177G30/CY62177GE30 MoBL, 32-Mbit (2M words × 16-bit/4M words × 8-bit) Static RAM with Error-Correcting Code (ECC) Document Number: 002-24704						
Rev.	ECN No.	Submission Date	Description of Change			
*C	7085237	02/09/2021	Release to web.			