

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

8-Mbit (512K Words × 16-Bit) Static RAM with Error-Correcting Code (ECC)

Features

- High speed□ t_{AA} = 10 ns
- Embedded error-correcting code (ECC) for single-bit error correction
- Low active and standby currents
 □ I_{CC} = 90-mA typical at 100 MHz
 □ I_{SB2} = 20-mA typical
- Operating voltage range: 2.2 V to 3.6 V.
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Available in Pb-free 44-pin TSOP II and Pb-free 48-ball FBGA packages

Functional Description

CY7C1051H is a high-performance CMOS fast static RAM device with embedded ${\sf ECC}^{[1]}$.

To access device, assert the chip enable $(\overline{\text{CE}})$ input LOW. To perform data writes, assert the Write Enable (WE) input LOW, and provide the data and address on the device data pins (I/O₀ through I/O₁₅) and address pins (A₀ through A₁₈) respectively. The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable (OE) input and provide the required address on the address lines. Read data is accessible on I/O lines (I/O $_0$ through I/O $_{15}$). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), or control signals are de-asserted ($\overline{\text{OE}}$, $\overline{\text{BLE}}$, $\overline{\text{BHE}}$).

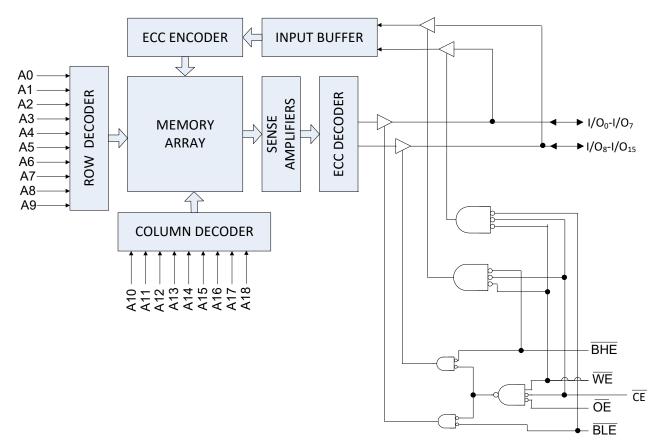
See the Truth Table on page 13 for a complete description of read and write modes.

The logic block diagrams are provided on page 2.

The CY7C1051H is available in 44-pin TSOP II package.

For a complete list of related documentation, click here.

Product Portfolio


					(Current Co	nsumption	
Product	Features and Options (see Pin Configurations	Range	V _{CC} Range	Speed	Operating	I _{CC} , (mA)	Standby, I _{SB2} (mA	
Floudet	on page 4)	ixaliye	(V)	(ns)	f = f _{max}		Standby, ISB2 (IIIA)	
					Typ ^[2]	Max	Typ ^[2]	Max
CY7C1051H30	Single chip enables	Industrial	2.2 V-3.6 V	10	90	110	20	30

^{1.} This device does not support automatic write-back on error detection.

^{2.} Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 \text{ V}$ (for a V_{CC} range of 2.2 V-3.6 V) $T_A = 25 \text{ °C}$.

Logic Block Diagram - CY7C1051H

Contents

Pin Configurations	4
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Data Retention Waveform	7
AC Switching Characteristics	8
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagram	15
Acronyms	17
Document Conventions	17
Units of Measure	17
Document History Page	18
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	
PSoC® Solutions	19
Cypress Developer Community	19
Technical Support	19

Pin Configurations

Figure 1. 44-pin TSOP II pinout

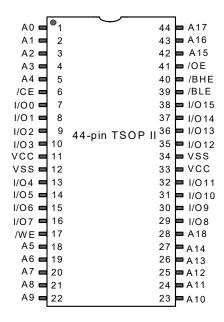
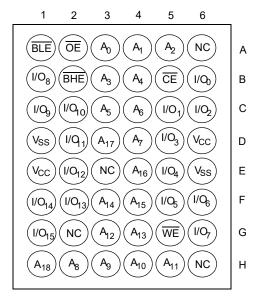



Figure 2. 48-ball FBGA pinout (Top View)

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage temperature-65 °C to +150 °C Ambient temperature

Supply voltage

on V_{CC} relative to GND-0.5 V to V_{CC} + 0.5 V

DC input voltage ^[3]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Grade	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

DC Electrical Characteristics

Over the operating range of -40 °C to 85 °C

Devenuetes	Description		Took Condition			Unit		
Parameter	Desc	ription	Test Conditions		Min	Typ ^[4]	Max	Unit
V _{OH}	Output	2.2 V to 2.7 V	$V_{\rm CC}$ = Min, $I_{\rm OH}$ = -1.0 mA		2.0	-	-	V
	HIGH voltage	2.7 V to 3.0 V	$V_{\rm CC}$ = Min, $I_{\rm OH}$ = -4.0 mA		2.2	-	_	
		3.0 V to 3.6 V	$V_{\rm CC}$ = Min, $I_{\rm OH}$ = -4.0 mA		2.4	-	_	
V_{OL}		2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA		_	_	0.4	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		_	_	0.4	
V _{IH} ^[3]	Input HIGH	2.2 V to 2.7 V			2.0	-	V _{CC} + 0.3	V
	voltage	2.7 V to 3.6 V		2.0	-	V _{CC} + 0.3		
V _{IL} [3]	Input LOW voltage	2.2 V to 2.7 V		-0.3	-	0.6	V	
		2.7 V to 3.6 V			-0.3	-	0.8	
I _{IX}	Input leakage current		$GND \leq V_{IN} \leq V_{CC}$		-1.0	-	+1.0	μΑ
I _{OZ}	Output leaka	ge current	GND \leq V _{OUT} \leq V _{CC} , Outpu	t disabled	-1.0	_	+1.0	μΑ
I _{CC}	Operating su	pply current	V _{CC} = Max, I _{OUT} = 0 mA,	f = 100 MHz	_	90.0	110.0	mA
			CMOS levels					
I _{SB1}	Automatic CE power down current – TTL inputs		Max V _{CC} , CE ≥ V _{IH} ^[4] ,		_	-	40.0	mA
			$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$					
I _{SB2}	Automatic Cl current – CM	E power down	Max V_{CC} , $\overline{CE} \ge V_{CC} - 0.2 V^{[5]}$,		_	20.0	30.0	mA
	Current – Civ	ioo iriputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V, f} = 0$					

- 3. $V_{IL(min)}$ = -2.0 V and $V_{IH(max)}$ = V_{CC} + 2 V for pulse durations of less than 20 ns.
- 4. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.
- 5. This parameter is guaranteed by design and is not tested.

Capacitance


Parameter [6]	Description	Test Conditions	44-pin TSOP II	48-ball VFBGA	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}$, $f = 1 \text{MHz}$, $V_{CC} = V_{CC(typ)}$	10	10	рF
C _{OUT}	I/O capacitance		10	10	рF

Thermal Resistance

Parameter [6]	Description	Test Conditions	44-pin TSOP II	48-ball VFBGA	Unit
Θ_{JA}		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	66.93	31.50	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		13.09	15.75	°C/W

AC Test Loads and Waveforms

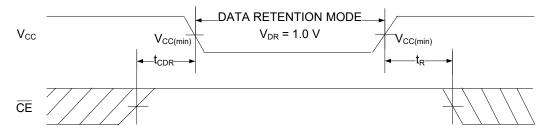
Figure 3. AC Test Loads and Waveforms [7]

Parameters	3.0 V	Unit
R1	317	Ω
R2	351	Ω
V_{TH}	1.5	V
V _{HIGH}	3	V

Notes

Document Number: 002-03314 Rev. *D

 ^{6.} Tested initially and after any design or process changes that may affect these parameters.
 7. Full-device AC operation assumes a 100-μs ramp time from 0 to V_{CC(min)} and 100-μs wait time after V_{CC} stabilizes to its operational value.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V _{CC} for data retention	_	1.0	-	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 V^{[8]},$ $V_{IN} \ge V_{CC} - 0.2 V \text{ or } V_{IN} \le 0.2 V$	_	30.0	mA
t _{CDR} ^[8]	Chip deselect to data retention time	_	0	_	ns
t _R ^[8, 9]	Operation recovery time	V _{CC} ≥ 2.2 V	10.0	_	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

^{8.} This parameter is guaranteed by design and is not tested.
9. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

AC Switching Characteristics

Over the operating range of -40 °C to 85 °C

Parameter [10]	Description	10	ns	11!4
Parameter [10]	Description	Min	Max	Unit
Read Cycle		<u>.</u>		
t _{POWER}	V _{CC} (stable) to the first access ^[11, 12]	100.0	_	μs
t _{RC}	Read cycle time	10.0	-	ns
t _{AA}	Address to data valid	-	10.0	ns
t _{OHA}	Data hold from address change	3.0	-	ns
t _{ACE}	CE LOW to data valid	_	10.0	ns
t _{DOE}	OE LOW to data valid	_	5.0	ns
t _{LZOE}	OE LOW to low Z [13, 14, 15]	0	_	ns
t _{HZOE}	OE HIGH to high Z [13, 14, 15]	_	5.0	ns
t _{LZCE}	CE LOW to low Z ^{13, 14, 15]}	3.0	-	ns
t _{HZCE}	CE HIGH to high Z [13, 14, 15]	_	5.0	ns
t _{PU}	CE LOW to power-up [12]	0	-	ns
t _{PD}	CE HIGH to power-down [12]	-	10.0	ns
t _{DBE}	Byte enable to data valid	_	5.0	ns
t _{LZBE}	Byte enable to low Z ^[13, 14]	0	-	ns
t _{HZBE}	Byte disable to high Z ^[13, 14]	_	6.0	ns
Write Cycle [16,	17]			
t _{WC}	Write cycle time	10.0	-	ns
t _{SCE}	CE LOW to write end	7.0	-	ns
t _{AW}	Address setup to write end	7.0	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	7.0	-	ns
t _{SD}	Data setup to write end	5.0	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{LZWE}	WE HIGH to low Z [13, 14, 15]	3.0	-	ns
t _{HZWE}	WE LOW to high Z [13, 14, 15]		5.0	ns
t _{BW}	Byte Enable to write end	7.0		ns

Notes

- 10. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels elevels of 1.5 V (for $V_{CC} < 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading, shown in part (a) of Figure 3 on page 6, unless specified otherwise.
- 11. t_{POWER} gives the minimum amount of time that the power supply is at stable V_{CC} until the first memory access is performed.
- 12. These parameters are guaranteed by design and are not tested.
- 13. t_{HZOE}, t_{HZCE}, t_{HZWE}, and t_{HZEE} are specified with a load capacitance of 5 pF, as shown in part (b) of Figure 3 on page 6. Hi-Z, Lo-Z transition is measured ±200 mV from steady state
- 14. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device.
- 15. Tested initially and after any design or process changes that may affect these parameters.

 16. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates
- 17. The minimum write pulse width for Write Cycle No. 2 (WE Controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.

Document Number: 002-03314 Rev. *D

Switching Waveforms

Figure 5. Read Cycle No. 1 of CY7C1051H (Address Transition Controlled) [18, 19]

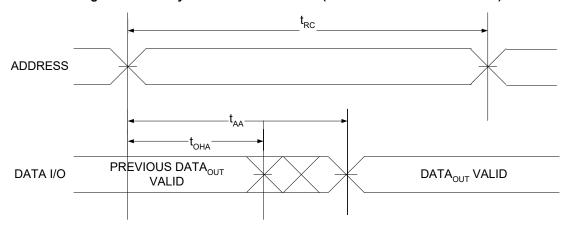
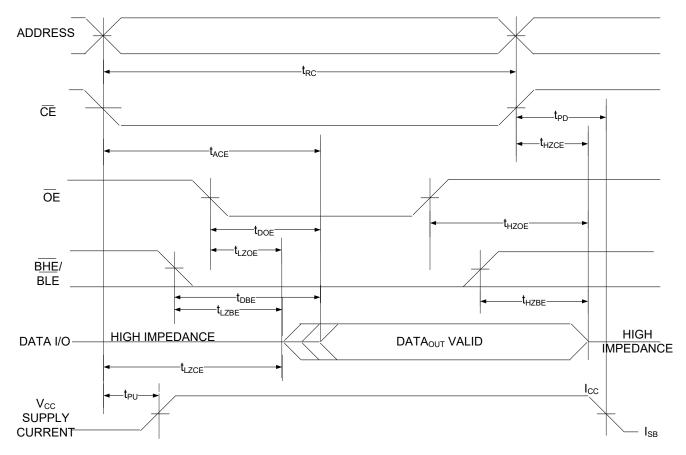



Figure 6. Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled) [19, 20]

- 18. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both $= V_{IL}$.
- 19. WE is HIGH for read cycle.
 20. Address valid prior to or coincident with CE LOW transition.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 (CE Controlled) [21, 22]

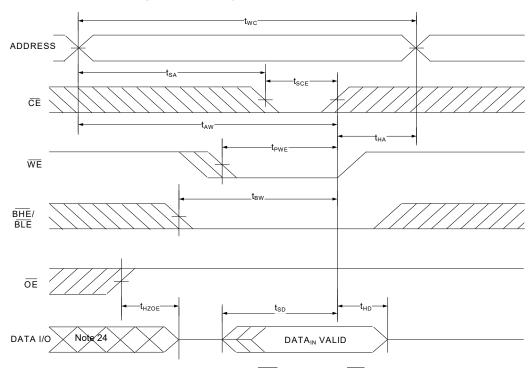
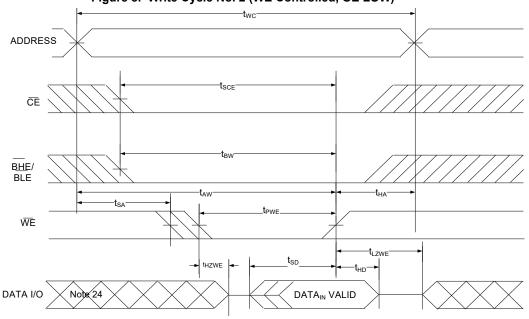
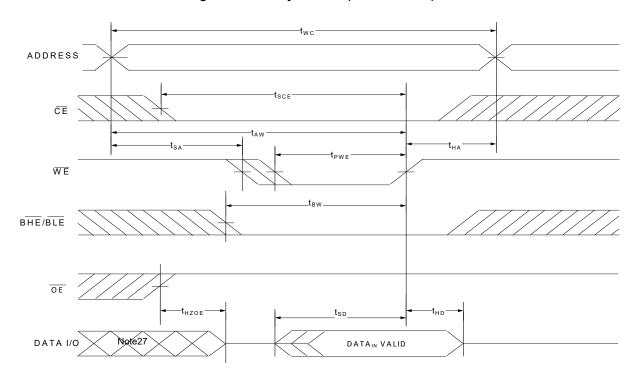



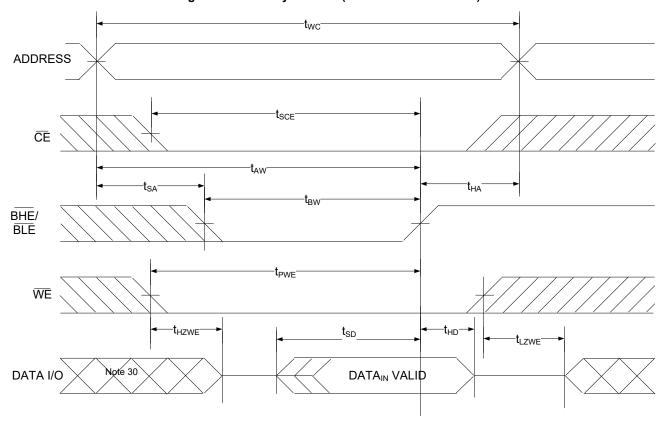
Figure 8. Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [21, 22, 23]



- 21. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 22. Data I/O is in high-impedance state if $\overline{\text{CE}} = \text{V}_{\text{IH}}$, or $\overline{\text{OE}} = \text{V}_{\text{IH}}$ or $\overline{\text{BHE}}$, and/or $\overline{\text{BLE}} = \text{V}_{\text{IH}}$. 23. The minimum write cycle pulse width should be equal to sum of t_{HZWE} and t_{SD} . 24. During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 3 (WE controlled) [25, 26]


^{25.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{26.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 27. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

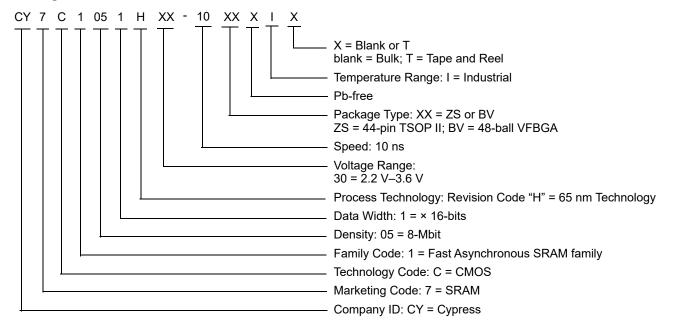
Figure 10. Write Cycle No. 4 (BLE or BHE Controlled) [28, 29]

^{28.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

^{29.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

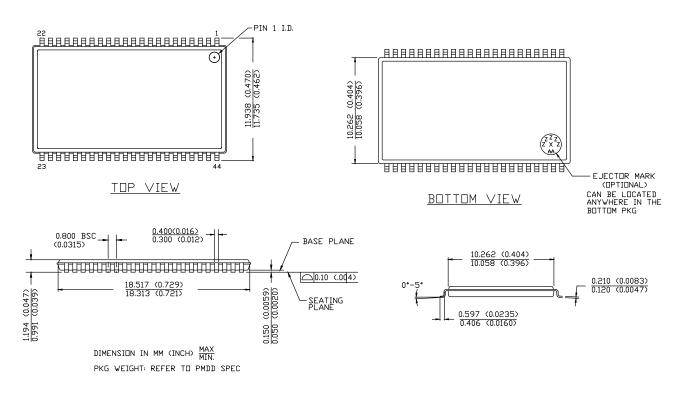
^{30.} During this period, the I/Os are in output state. Do not apply input signals.

Truth Table


CE	OE	WE	BLE	ВНЕ	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	X ^[31]	X ^[31]	X ^[31]	X ^[31]	High-Z	High-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	High-Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	High-Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Χ	Х	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})

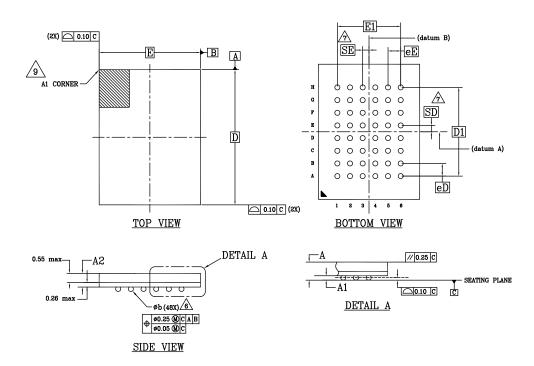
Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	Operating Range
10	2.2 V-3.6 V	CY7C1051H30-10ZSXI	51-85087	44-pin TSOP II	Single Chip Enable	Industrial
		CY7C1051H30-10ZSXIT				
		CY7C1051H30-10BVXI	51-85150	48-ball VFBGA		


Ordering Code Definitions

Package Diagram

Figure 11. 44-pin TSOP II (18.4 × 10.2 × 1.194 mm) Package Outline, 51-85087



51-85087 *F

Package Diagram (continued)

Figure 12. 48-ball VFBGA (6 × 8 × 1.0 mm) Package Outline, 51-85150

		DIMENSIONS	
SYMBOL	MIN.	NOM.	MAX.
Α			1.00
A1	0.16	-	
A2	-	•	0.81
D		8.00 BSC	
E		6.00 BSC	
D1		5.25 BSC	
E1		3.75 BSC	
MD		8	
ME		6	
n		48	
Øь	0.25	0.30	0.35
eE		0.75 BSC	
eD		0.75 BSC	
SD		0.375 BSC	
SE	0.375 BSC		

NOTES:

- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-2009.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.

"SD" OR "SE" = 0.

- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 4. @REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
 IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

^:So* and "se" are measured with respect to datums a and b and define the position of the center solder ball in the outer row.

When there is an odd number of solder balls in the outer row

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, $"SD" = eD/2 \ AND \ "SE" = eE/2.$

** INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.

51-85150 *I

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description	
BHE	Byte High Enable	
BLE	Byte Low Enable	
CE Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor	
I/O	Input/Output	
OE	Output Enable	
SRAM	Static Random Access Memory	
TSOP	Thin Small Outline Package	
TTL	Transistor-Transistor Logic	
VFBGA	Very Fine-Pitch Ball Grid Array	
WE	Write Enable	

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

	Document Title: CY7C1051H, 8-Mbit (512K Words × 16-Bit) Static RAM with Error-Correcting Code (ECC) Document Number: 002-03314				
Rev.	ECN No.	Submission Date	Description of Change		
**	4943606	10/09/2015	New data sheet.		
*A	5258628	05/27/2016	Changed status from Preliminary to Final. Updated to new template.		
*B	5435280	09/13/2016	Updated Maximum Ratings: Updated Note 3 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Removed Operating Range "2.7 V to 3.6 V" and all values corresponding to V _{OH} parameter. Included Operating Ranges "2.7 V to 3.0 V" and "3.0 V to 3.6 V" and all values corresponding to V _{OH} parameter. Updated Ordering Information: Updated part numbers. Updated Ordering Code Definitions. Updated to new template. Completing Sunset Review.		
*C	5975928	11/27/2017	Updated Cypress Logo and Copyright.		
*D	7023423	11/13/2020	Added 48-ball VFBGA package related information in all instances across the document. Updated Ordering Information: Updated part numbers. Updated Package Diagram: spec 51-85087 – Changed revision from *E to *F. Added spec 51-85150 *I. Updated to new template. Completing Sunset Review.		